검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 32

        21.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Lithium-ion batteries (LIBs) are rapidly improving in capacity and life cycle characteristics to meet the requirements of a wide range of applications, such as portable electronics, electric vehicles, and micro- or nanoelectromechanical systems. Recently, atomic layer deposition (ALD), one of the vapor deposition methods, has been explored to expand the capability of LIBs by producing near-atomically flat and uniform coatings on the shell of nanostructured electrodes and membranes for conventional LIBs. In this paper, we introduce various ALD coatings on the anode, cathode, and separator materials to protect them and improve their electrochemical and thermomechanical stability. In addition, we discuss the effects of ALD coatings on the three-dimensional structuring and conduction layer through activation of electrochemical reactions and facilitation of fluent charge collection.
        4,000원
        22.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, several kinds of active carbons with high specific surface area and micro pore structure were prepared from the coconut shell charcoal using chemical activation method. The physical property of prepared active carbon was investigated by experimental variables such as activating chemical agents to char coal ratio, flow rate of inert gas and temperature. It was shown that chemical activation with KOH and NaOH was successfully able to make active carbons with high surface area of 1900~2500 m2/g and mean pore size of 1.85~2.32 nm. The coin cell using water-based binder in the electrolyte of LiPF6 dissolved in mixed organic solvents (EC:DMC:EMC=1:1:1 vol%) showed better capacity than that of oil-based binder. Also, it was found that the coin cell of water-based binder shows an improved cycling performance and coulombic efficiency.
        4,000원
        23.
        2014.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Silicon-carbon composite was prepared by the magnesiothermic reduction of mesoporous silica and subsequent impregnation with a carbon precursor. This was applied for use as an anode material for high-performance lithium-ion batteries. Well-ordered mesoporous silica(SBA-15) was employed as a starting material for the mesoporous silicon, and sucrose was used as a carbon source. It was found that complete removal of by-products (Mg2Si and Mg2SiO4) formed by side reactions of silica and magnesium during the magnesiothermic reduction, was a crucial factor for successful formation of mesoporous silicon. Successful formation of the silicon-carbon composite was well confirmed by appropriate characterization tools (e.g., N2 adsorption-desorption, small-angle X-ray scattering, X-ray diffraction, and thermogravimetric analyses). A lithium-ion battery was fabricated using the prepared silicon-carbon composite as the anode, and lithium foil as the counter-electrode. Electrochemical analysis revealed that the silicon-carbon composite showed better cycling stability than graphite, when used as the anode in the lithium-ion battery. This improvement could be due to the fact that carbon efficiently suppressed the change in volume of the silicon material caused by the charge-discharge cycle. This indicates that silicon-carbon composite, prepared via the magnesiothermic reduction and impregnation methods, could be an efficient anode material for lithium ion batteries.
        4,000원
        24.
        2012.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        nanotubes were successfully synthesized using an electrospinning technique followed by calcination in air. The nanotubes were the single phase nature of and consisted of approximately 14 nm nanocrystals. SEM and TEM characterizations demonstrated that uniform hollow fibers with an average outer diameter of around 124 nm and wall thickness of around 25 nm were successfully obtained. As anode materials for lithium ion batteries, the nanotubes exhibited excellent cyclability and reversible capacity of up to 25 cycles at as compared to nanoparticles with a capacity of . Such excellent performance of the nanotube was related to the one-dimensional hollow structure which acted as a buffer zone during the volume contraction and expansion of Sn.
        4,000원
        25.
        2012.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mass production-capable powder was synthesized for use as cathode material in state-of-the-art lithium-ion batteries. These batteries are main powder sources for high tech-end digital electronic equipments and electric vehicles in the near future and they must possess high specific capacity and durable charge-discharge characteristics. Amorphous silicone was quite superior to crystalline one as starting material to fabricate silicone oxide with high reactivity between precursors of sol-gel type reaction intermediates. The amorphous silicone starting material also has beneficial effect of efficiently controlling secondary phases, most notably . Lastly, carbon was coated on powders by using sucrose to afford some improved electrical conductivity. The carbon-coated cathode material was further characterized using SEM, XRD, and galvanostatic charge/discharge test method for morphological and electrochemical examinations. Coin cell was subject to 1.5-4.8 V at C/20, where 74 mAh/g was observed during primary discharge cycle.
        4,000원
        26.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Two different types of graphite, such as flake graphite (FG) and spherical graphite (SG), were used as anode materials for a lithium-ion secondary battery in order to investigate their electrochemical performance. The FG particles were prepared by pulverizing natural graphite with a planetary mill. The SG particles were treated by immersing them in acid solutions or mixing them with various carbon additives. With a longer milling time, the particle size of the FG decreased. Since smaller particles allow more exposure of the edge planes toward the electrolyte, it could be possible for the FG anodes with longer milling time to deliver high reversible capacity; however, their initial efficiency was found to have decreased. The initial efficiency of SG anodes with acid treatments was about 90%, showing an over 20% higher value than that of FG anodes. With acid treatment, the discharge rate capability and the initial efficiency improved slightly. The electrochemical properties of the SG anodes improved slightly with carbon additives such as acetylene black (AB), Super P, Ketjen black, and carbon nanotubes. Furthermore, the cyclability was much improved due to the effect of the conductive bridge made by carbon additives such as AB and Super P.
        4,000원
        27.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon/silicon composites were synthesized by mixing silicon powders with petroleum pitch and subsequent heat-treatment. The resultant composites were composed of carbon and nano-size crystalline silicon identified by XRD and EDX. FIB images and SEM images were taken respectively to detect the existence of silicon impregnated in carbon and the distribution of silicon on the carbon surface. The obtained carbon/silicon materials were assembled as half cell anodes for lithium ion secondary battery and their electrochemical properties were tested. The pitch/silicon composite (3 : 1 wt. ratio) heat treated at 1000℃ and mixed with 55.5 wt.% of graphite showed relatively good electrochemical properties such as the initial efficiency of 78%, the initial discharge capacity of 605 mAh/g, and the discharge capacity of 500 mAh/g after 20 cycles.
        4,000원
        28.
        2005.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The natural graphite particles A and heat-treated graphite particles B at 1800 ℃ after pitch-coating were used as the anode base materials for lithium ion secondary battery. In order to improve the performance of anode materials, the base anode materials were treated with various acids. With the acid treatments of 62% HNO3 and 95% H2SO4 aqueous solution, the specific surface area and electrical conductivity of base anode materials were increased, and the initial charge-discharge capacity and cycle performance were improved due to the elimination of structural defects.
        4,000원
        29.
        2003.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to improve the lithium ion battery's performance, the carbon nanofibers were introduced to the anode electrode fabricated with natural graphite particles. The influence of structural adjustment of the particles by the introduction method of carbon nanofibers and the content of carbon nanofibers on the electrical property and charge/discharge characteristics of the electrode were investigated. The electrode fabricated with the mixture of 10 wt% of carbon nanofibers grown separately and 90 wt% of graphite particles showed an excellent discharge capacity of 400 mAh/g and the improved cycle performance. The improved performance could be explained by that the carbon nanofibers shortened and uniformly distributed on the surface of graphite particles by ball milling increased the stability for the intercalation/deintercalation of lithium ion and increased the electrical conductivity due to the closed packing between graphite particles.
        4,200원
        30.
        2003.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Sn - graphite composites were prepared by chemical encapsulation method for anode materials in Li-ion batteries. EDS and XRD analysis confirmed the presence of Sn in the graphite structure. Cyclic voltammometry (CV) measurement shows extra reduction and oxidation peaks, which might to be related to the formations of alloy compounds. Graphite-tin composite electrodes demonstrated higher Lithium storage capacities than graphite electrodes. Due to the nature of fine Sn particles on graphite surface, the graphite-tin composite electrodes have shown a good cycle properties.
        4,000원
        31.
        2001.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The performance of Li-ion system based on LiCoO2 and Graphite is well optimized for the 3C applications. The charge-discharge mode, the manufacturing process, the cell performance and the thermal reactions affecting safety has been explained in the engineering point of view. The energy density of the current LIB system is in the range of 300~400 Wh/l. In order to achieve the energy density higher than 500 Wh/l, the active materials should be modified or changed. Adopting new high capacity anode materials would be effective to improve energy density.
        3,000원
        32.
        1997.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        휴대용 정보 통신기기의 소형 경량화에 적합한 고용량 전지인 리튬이온 이차전지에 응용되는 미세다공성 고분자 격리막에 관한 특성을 검토하였다. 격리막으로서 요구되어지는 항목은 전지 성능에도 관련되며, 안전에도 관련된 것들 이어서, 전지의 부재로서 상당히 중요한 부분을 차지하고 있다. 철재는 폴리에틸렌(PE) 등과 같은 폴리올레핀 소재를 연신하여 제조한 미세다공성 격리막이 주로 채용되고 있으며, 다양한 shut-down온도에 적용 가능하고, wettability가 향상된 미세다공성 격리막으로서, 불소계 고분자의 적용 및 폴리올레핀계 소재의 표면개질 등에 관한 연구가 지속되고 있다.
        4,000원
        1 2