검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 75

        21.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Numerical analysis has been carried out to investigate seawater flow field characteristics with various current directions near the manganese nodule mining device. Seawater flow near the collecting device is largely influenced by the sea current direction, especially along the downstream of the rear system. Predicted flow velocity distributions are analyzed with turbulent kinetic energy and drag force. There is big flow field variation when the direction angle between the mining device and seawater current flow approaches to 30°~ 120°, and flow velocity along the rear region of 60° becomes faster than 180°. Averaged turbulent kinetic energy at 180° also becomes low, about 57% higher at 60°. These results from the study can be applicable to the optimum design of manganese nodule collecting system in the deep seawater flow.
        4,000원
        22.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The water containing soluble manganese may cause problems such as discolored water, unpleasant taste, fouling or scaling of pipes in water distribution system, and so on. Conventional water treatment processes using sand filtration or sedimentation after oxidation, however, cannot often meet manganese standard for drinking water. Two types of oxidants, potassium permanganate (KMnO4) and sodium hypochlorite (NaOCl), were utilized at the same time for manganese oxidation, and then the precipitated manganese oxides were removed by low pressure membrane filtration in this study. In batch experiments, the multiple injection of both oxidants showed more effective manganese removal than did the single injection using either of them. Moreover, the deterioration of manganese removal at low temperature was less serious for the multiple injection than that for the single injection. Manganese removal by the continuous system of oxidation by multiple injection combined with membrane filtration was higher than those by batch experiments at the same oxidation conditions. In addition, less membrane fouling was observed for membrane filtration with oxidation during continuous membrane filtration than membrane filtration without oxidation. These results indicate that the oxidation by multiple injection coupled with membrane filtration was efficient and applicable to actual water treatment for manganese removal.
        4,000원
        23.
        2018.05 구독 인증기관·개인회원 무료
        막여과 정수장에 고농도 망간이 유입될 경우 심각한 막오염을 유발할 수 있어 망간에 대한 제어가 필요하다. 최근 수처리제로 등록된 NaMnO4의 경우 짧은 반응시간에 망간 제거가 가능하여 정수장 적용이 유리할 것으로 기대되고 있다. 본 연구에서는 NaMnO4 주입에 따른 망간 제거 성능과 막의 여과유속에 미치는 영향을 평가하였다. 유입망간농도 대비 NaMnO4 주입 조건을 평가한 결과반응시간 5분 이내 1배, 1.5배 조건에서 약 90% 이상의 망간 제거 효율을 나타내었으며 0.5배, 2배 조건에서는 제거효율이 감소되었다. 또한, NaMnO4 주입조건과 미주입 조건에 대한 여과유속을 평가한 결과 미주입 조건과 비교하여 주입조건에서의 막오염이 저감되어 미주입 조건과 비교하여 유과유속이 높게 유지되었다.
        24.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is focused on manganese (Mn(II)) removal by ozonation in surface water. Instant ozone demand for the water was 0.5 mg/L in the study. When 0.5 mg/L of Mn(II) is existed in water, the optimum ozone concentration was 1.25 mg/L with reaction time 10 minutes to meet the drinking water regulation. The ozone concentration to meet the drinking water regulation was much higher than the stoichiometric concentration. The reaction of soluble manganese removal was so fast that the reaction time does not affect the removal dramatically. When Mn(II) is existed with Fe, the removal of Mn(II) was not affected by Fe ion. However As(V) is existed as co-ion the removal of Mn(II) was decreased by 10%. Adding ozone to surface water has limited effect to remove dissolved organic matter. When ozone is used as oxidant to remove Mn(II) in the water, the existing co-ion should be evaluated to determine optimum concentration.
        4,000원
        25.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In water treatment process using microfiltration membranes, manganese is a substance that causes inorganic membrane fouling. As a result of analysis on the operation data taken from I WTP(Water Treatment Plant), it was confirmed that the increase of TMP was very severe during the period of manganese inflow. The membrane fouling fastened the increase of TMP and shortened the service time of filtration or the cleaning cycle. The TMP of the membrane increased to the maximum of 2.13 kgf/cm2, but it was recovered to the initial level (0.17 kgf/cm2) by the 1st acid cleaning step. It was obvious that the main membrane fouling contaminants are due to inorganic substances. As a result of the analysis on the chemical waste, the concentrations of aluminum(146-164 mg/L) and manganese(110-126 mg/L) were very high. It is considered that aluminum was due to the residual unreacted during coagulation step as a pretreatment process. And manganese is thought to be due to the adsorption on the membrane surface as an adsorbate in feed water component during filtration step. For the efficient maintenance of the membrane filtration facilities, optimization of chemical concentration and CIP conditions is very important when finding the abnormal level of influent including foulants such as manganese.
        4,200원
        28.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Lithium silicate, a lithium-ion conducting ceramic, is coated on a layer-structured lithium nickel manganese oxide (LiNi0.7Mn0.3O2). Residual lithium compounds (Li2CO3 and LiOH) on the surface of the cathode material and SiO2 derived from tetraethylorthosilicate are used as lithium and silicon sources, respectively. Powder X-ray diffraction and scanning electron microscopy with energy-dispersive spectroscopy analyses show that lithium silicate is coated uniformly on the cathode particles. Charge and discharge tests of the samples show that the coating can enhance the rate capability and cycle life performance. The improvements are attributed to the reduced interfacial resistance originating from suppression of solid-electrolyte interface (SEI) formation and dissolution of Ni and Mn due to the coating. An X-ray photoelectron spectroscopy study of the cycled electrodes shows that nickel oxide and manganese oxide particles are formed on the surface of the electrode and that greater decomposition of the electrolyte occurs for the bare sample, which confirms the assumption that SEI formation and Ni and Mn dissolution can be reduced using the coating process.
        4,000원
        29.
        2017.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, two Fe-30Mn-0.2C-(1.5Al) high-manganese steels with different surface conditions were hydrogencharged under high temperature and pressure; then, tensile testing was performed at room temperature in air. The yield strength of the 30Mn-0.2C specimen increased with decreasing surface roughness(achieved via polishing), but that of the 30Mn-0.2C- 1.5Al specimen was hardly affected by the surface conditions. On the other hand, the tendency of hydrogen embrittlement of the two high-manganese steels was not sensitive to hydrogen charging or surface conditions from the standpoints of elongation and fracture behavior. Based on the EBSD analysis results, the small decrease in elongation of the charged specimens for the Fe-30Mn-0.2C-(1.5Al) high-manganese steels was attributed to the enhanced dislocation pile-up around grain boundaries, caused by hydrogen
        4,000원
        30.
        2016.11 구독 인증기관·개인회원 무료
        본 연구는 수중 비소제거를 위해 망간-철 산화물을 합성하고, PVdF와 복합화하여 전기방사법으로 제조하였다. TEM에서 산화물은 철이 망간을 감싼 형태이다. 인장강도는 PMF10이 PVdF보 다 2배 증가하였고 기공크기는 PVdF보다 작아지는 것이 확인되었다. 비소제거 실험에서 산화물은 As(Ⅲ)제거율이 80%이상 나왔고, As(V)도 제거되 었다. As(Ⅲ) 제거율은 PMF01이 30%로 상대적으로 우수한 결과를 보였다. 따라 서 이산화물은 나노섬유와 복합화를 통해 수처리 필터소재에 대한 기초연구에 활용될 것으로 기대된다.
        31.
        2016.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The hydrogen embrittlement of two austenitic high-manganese steels was investigated using tensile testing under high-pressure gaseous hydrogen. The test results were compared with those of different kinds of austenitic alloys containing Ni, Mn, and N in terms of stress and ductility. It was found that the ultimate tensile stress and ductility were more remarkably decreased under high-pressure gaseous hydrogen than under high-pressure gaseous argon, unlike the yield stress. In the specimens tested under high-pressure gaseous hydrogen, transgranular fractures were usually observed together with intergranular cracking near the fracture surface, whereas in those samples tested under high-pressure gaseous argon, ductile fractures mostly occurred. The austenitic high-manganese steels showed a relatively lower resistance to hydrogen embrittlement than did those with larger amounts of Ni because the formation of deformation twins or microbands in austenitic highmanganese steels probably promoted planar slip, which is associated with localized deformation due to gaseous hydrogen.
        4,000원
        32.
        2016.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This paper presents a study of the tensile properties of austenitic high-manganese steel specimens with different grain sizes. Although the stacking fault energy, calculated using a modified thermodynamic model, slightly decreased with increasing grain size, it was found to vary in a range of 23.4 mJ/m2 to 27.1 mJ/m2. Room-temperature tensile test results indicated that the yield and tensile strengths increased; the ductility also improved as the grain size decreased. The increase in the yield and tensile strengths was primarily attributed to the occurrence of mechanical twinning, as well as to the grain refinement effect. On the other hand, the improvement of the ductility is because the formation of deformation-induced martensite is suppressed in the high-manganese steel specimen with small grain size during tensile testing. The deformationinduced martensite transformation resulting from the increased grain size can be explained by the decrease in stacking fault energy or in shear stress required to generate deformation-induced martensite transformation.
        4,000원
        33.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is focused on manganese (Mn(II)) removal by potassium permanganate (KMnO4) in surface water. The effects of bicarbonate on Mn(II) indicated that bicarbonate could remove Mn(II), but it was not effectively. When 0.5 mg/L of Mn(II) was dissolved in tap water, the addition of KMnO4 as much as KMnO4 to Mn(II) ratio is 0.67 satisfied the drinking water regulation for Mn (i.e. 0.05 mg/L), and the main mechanism was oxidation. On the other hand, when the same Mn(II) concentration was dissolved in surface water, the addition of KMnO4, which was the molar ratio of KMnO4/Mn(II) ranged 0.67 to 0.84 was needed for the regulation satisfaction, and the dominant mechanisms were both oxidation and adsorption. Unlike Mn(II) in tap water, the increasing the reaction time increased Mn(II) removal when KMnO4 was overdosed. Finally, the optimum conditions for the removals of 0.5 - 2.0 mg/L Mn(II) in surface water were both KMnO4 to Mn(II) ratio is 0.67 - 0.84 and the reaction time of 15 min. This indicated that the addition of KMnO4 was the one of convenient and effective methods to remove Mn(II).
        4,000원
        34.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 비소(arsenic, As) 제거 특성을 가진 망간-철 산화물(manganese-iron oxide, MF)을 제조하고, 이를 poly vinylidene fluoride (PVdF)와 복합화를 진행하여 As(III)와 As(V)를 동시에 제거가 가능한 수처리용 나노섬유복합막 (polymer nanofiber membrane with Mn-Fe, PMF) 제조에 관한 기초 연구를 진행하였다. Transmission electron microscope (TEM) 분석을 통해 MF 소재의 형상 및 구조를 확인하였으며, PMF 복합막의 수처리용 분리막으로의 활용가능성을 조사하 기 위하여 기계적 강도, 기공크기, 접촉각 및 수투과도 분석을 진행하였다. 측정결과로부터 망간과 철 비율이 같은 PMF11 복 합막의 기계적 강도가 가장 높은 결과값(232.7 kgf/cm2)을 나타낸 것을 확인할 수 있었다. 또한, MF 소재의 도입에 따라 기공 크기가 점차 줄어드는 경향성을 확인할 수 있었으며, 특히, 철 산화물의 조성비가 증가할수록 기공크기가 감소하는 경향성을 보여주었다. 수투과도 측정결과 MF 소재의 도입에 따라 PVdF 나노섬유막에 비해 약 10~60% 이상 향상되는 결과를 나타내 었다. 제조된 MF 소재 및 PMF 복합막의 비소 제거 특성평가를 통해 As(III)와 (V)의 동시 제거 가능하며, 특히, MF01 샘플 의 경우 As(III)와 (V)에 각각 93, 68%의 가장 높은 흡착제거율을 나타내었다. 따라서 본 연구에서는 제조된 MF소재 및 PMF 복합막을 통해 수처리용 분리막의 기능성 향상을 위한 기초연구 자료로 활용할 수 있을 것으로 기대된다.
        4,000원
        35.
        2015.11 구독 인증기관·개인회원 무료
        식용수의 비소오염으로 인한 피해로 비소에 대한 관심이 증대되고 있으며, 아시아 지역뿐만 아니라 북남미, 유럽까지 비소로 오염된 지하수가 발견되고 있다. 본 연구에서는 As(Ⅲ)와 As(V)의 흡착특성을 가진 것으로 알려진 망간-철 산화물을 합성하고, PVdF고분자를 이용하여 복합나노섬유를 제조하였으며, 복합막의 물리적 특성과 비소제거 성능을 확인하였다. 복합화 전 합성된 망간-철 산화물을 ICP를 이용하여 비소제거율을 측정한 결과 As(V)는 43.6%, As(Ⅲ)는 65.5%의 제거율을 보였다.
        36.
        2015.05 구독 인증기관·개인회원 무료
        망간은 수중에서 대체적으로 불용성이나, 지하나 지표에서 여러 가지 반응으로 인해 수중으로 용존되어 유입된다. 용존된 망간은 먹는 물에서 0.1 mg/L 이상일 경우 불쾌한 금속냄새가 나며, 0.02 mg/L 이상에서는 박테리아에 의한 이취미가 발생할 수 있다. 또한, 망간산화물이 급배수관에 피복되어 통수능을 감소시킨다. 최근 강화된 국내 먹는 물 수질 기준치는 0.05 mg/L이다. 이러한 망간 문제를 해결할 수처리 공정 연구가 필요하다. 본 연구에서는 과망간산칼륨(KMnO4)과 차아염소산 나트륨(NaOCl)을 이용하여 망간을 산화물로 변화시키고, 이를 한외여과막으로 제거한 후의 망간제거효율을 연구하였다. 특히, 두 산화제를 복합으로 사용할 때의 효과를 분석하고 실제 적용 가능성을 타진하였다.
        37.
        2015.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The properties of dust collected from electric arc furnace of ferro manganese production units was investigated, and also the metallic manganese was recovered from the dust by aluminothermy process. The ferromanganese dust collected from electric arc furnace contained about 15% of manganese oxide (Mn3O4) and 9% of carbon as the contaminant, and have a 5um of 50% median diameter and irregular particle shape. The carbon contaminant in the dust could be reduced until about 0.1~0.5% level by roasting in the air at a temperature of 600~900C for 60minutes. The recovery of manganese could not be carried out using only ferromanganese dust from electric arc furnace by aluminothermy process, but the ferromanganese which contained manganese of about 92% and iron of about 5% could be obtained from the mixture of ferromanganese dusts from electric arc furnace and converter. The best mixing condition of dust fixed at electric arc furnace dust / converter dust ratio of 1:9 and 2:8, and the mixing rato of 3:7 or more could not separated the metal and slag from the reactant after aluminothermy reaction.
        4,000원
        38.
        2015.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of retained and reversed austenite on the damping capacity in high manganese stainless steel with two phases of martensite and austenite was studied. The two phase structure of martensite and retained austenite was obtained by deformation for various degrees of deformation, and a two phase structure of martensite and reverse austenite was obtained by reverse annealing treatment for various temperatures after 70 % cold rolling. With the increase in the degree of deformation, the retained austenite and damping capacity rapidly decreased, with an increase in the reverse annealing temperature, the reversed austenite and damping capacity rapidly increased. With the volume fraction of the retained and reverse austenite, the damping capacity increased rapidly. At same volume of retained and reversed austenite, the damping capacity of the reversed austenite was higher than the retained austenite. Thus, the damping capacity was affected greatly by the reversed austenite.
        4,000원
        40.
        2013.04 구독 인증기관 무료, 개인회원 유료
        심해저 망간단괴의 탐사규칙에 따른 탐사계약이 오는 2016년 만료되는 국가가 많으므로 탐사규칙에 이은 개발규칙의 준비가 본격화 되고 있다. 본 논문에서는 심해저 망간단괴 개발규칙의 핵심쟁점으로 예상되는 사안들을 살펴보고 그에 대한 분석 및 향후 연구과제를 도출한다. 망간단괴 개발규칙에 있어서 가장 핵심이 될 것으로 예상되는 쟁점은 계약의 유형, 면허의 종류, 재정체계 등이다. 계약의 종류는 프로젝트에 대한 정부의 통제가 가능한 서비스계약과, 운영자의..
        3,000원
        1 2 3 4