It is important to measure the performance of group project but also very important to evaluate the contribution of individual members fairly. The degree of contribution of group members can be assessed by pair-wise comparison method of the Analytic Hierarchy Process. The degree of contribution of group members can be biased in a way that is advantageous to evaluator oneself during the pair-wise comparison process. In this paper, we will examine whether there is a difference in the contribution weight vectors obtained when including evaluator and excluding oneself in the pair-wise comparison. To do this, the experimental data was obtained by making pair-wise comparison in two ways for 15 5-person groups that perform term projects in university classes and 15 pairs of weight vectors for contribution were obtained. The results of the nonparametric test for these 15 pairs of weights vectors are given.
To reduce production cost and inhibit the aggregation of graphene, graphene oxide and copper nitrate solution were used as raw materials in the paper. Cu particles were introduced to the graphene nanosheets by in-situ chemical reduction method in the hydrazine hydrate and sodium hydroxide solution, and the copper matrix composite reinforced with Cu-doped graphene nanosheets were fabricated by powder metallurgy. The synthesized Cu-doped graphene was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The relative density, hardness, electrical conductivity and tensile strength of the copper matrix composite reinforced with Cudoped graphene were measured as well. The results show that copper ions and graphene oxide can be effectively reduced by hydrazine hydrate simultaneously. Most of oxygen functional groups on the Cu-doped graphene sheets can be removed dramatically, and Cu-doped graphene inhibit the graphene aggregation effectively. Within the experimental range, the copper matrix composites have good comprehensive properties with 0.5 wt% Cu-doped graphene. The tensile strength and hardness are 221 MPa and 81.6 HV, respectively, corresponding to an increase of 23% and 59% compared to that of pure Cu, and the electrical conductivity reaches up to 93.96% IACS. However, excessive addition of Cu-doped graphene is not beneficial for the improvement on the hardness and electrical conductivity of copper matrix composite.
음이온 교환막은 수전해 시스템에서 매우 중요한 역할을 하며, 생성된 수소와 산소 기체를 물리적으로 분리할 뿐 만 아니라 전극 사이에서 수산화 이온의 선택적인 전달을 용이하게 한다. 음이온 교환막에 요구되는 특성은 수산화 이온에 대한 높은 전도도와 알칼리 환경에서의 화학적/기계적 안정성 등이 있다. 본 연구에서는 셀룰로오스 나노 크리스탈이 포함된 poly(terphenyl piperidinium) (qPTP/CNC) 복합매질분리막을 제조하였다. 고분자 매질로 사용된 poly(terphenyl piperidinium) 은 super-acid 중합법을 통해 제조되었으며 이온전도성과 알칼라인 내구성이 뛰어난 소재로 알려져 있다. qPTP/CNC 분리막 의 구조는 고분자와 나노 입자 계면의 공극이나 큰 응집체가 없는 조밀하고 균일한 형태를 나타냈다. CNC 나노 입자가 2 wt% 첨가된 qPTP/CNC 분리막은 높은 이온교환용량(1.90 mmol/g)과 낮은 함수율(9.09%) 및 팽윤도(5.56%)를 보였다. 또한, 복합막은 수전해 작동 환경인 50°C 1 M KOH에서 상용 FAA-3-50 분리막에 비해 월등히 낮은 저항과 우수한 알칼라인 내구 성(384시간)을 달성했다. 이러한 결과는 친수성 첨가제인 CNC가 음이온 교환막의 이온 전도 특성과 알칼라인 내구성 향상에 기여할 수 있음을 보고하였다.
This study aimed to fabricate composites with high thermal conductivity using diglycidyl ether of bisphenol-A (DGEBA), incorporating carbon fiber cloth (CFC) and graphene as reinforcing agents. Notably, the dispersion of graphene within the DGEBA matrix was enhanced through surface modification via a silane coupling agent. The effects of CFC and graphene addition on the impact strength, thermal conductivity, and morphology of the composites were examined. The experimental results showed that the incorporation of 6 wt% CFC resulted in a substantial (16-fold) increase in impact strength. Furthermore, the introduction of 6 wt% CFCs along with 20 wt% graphene led to a remarkable enhancement in thermal conductivity to 5.7 W/(m K), which was approximately 22 and 4 times higher than the intrinsic thermal conductivities of pristine DGEBA and the CFC/DGEBA composite, respectively. The increased impact strength is ascribed to the incorporation of CFC and silane-modified graphene. Additionally, the gradual increase in thermal conductivity can be attributed to the enhanced interaction between the acidic silane-modified graphene and the basic epoxy–amine hardener within the system studied.
Carbon quantum dots (CQDs), the newest member of carbonaceous nanomaterials, have drawn many considerations since the past two decades. A vast number of researchers made their efforts to demystify optical behavior of these materials despite being demanding. Nevertheless, their emission origin is still a controversial issue and this area suffers from a lack of hypothesis to explain the radiative transitions of these materials. White emissive CQDs are more prized among the other ones since it has provided an affordable warm white light source for many applications. In this paper, white emissive CQDs samples were prepared through a one-step hydrothermal synthesis approach. By using the advantage of possessing cellulosic networks in the Aloe Vera gel an in-situ matrix was created to encase CQDs particles. During the formation of CQDs particles, they were entrapped and created RGB nanoemitters in the cellulosic units. The leakage of the emitted photons during the radiative transitions followed by inner-filter effect (IFE) and self-/re-absorption acted as white light emissive sources. To scrutinize the validity and possibility of the hypothesis given in this paper, a series of spectroscopic analyses, including transmission electron microscopy (TEM), surface-enhanced Raman scattering (SERS), Fourier Transform Infrared (FT-IR), ultraviolet–visible (UV–Vis), and photoluminescence (PL) were conducted.
A carbon matrix for high-capacity Li/Na/K-alloy-based anode materials is required because it can effectively accommodate the variation in the volume of Li/Na/K-alloy-based anode materials during cycling. Herein, a nanostructured porous polyhedral carbon (PPC) was synthesized via a simple two-step method consisting of carbonization and selective acid etching, and their electrochemical Li/Na/K-ion storage performance was investigated. The highly uniform PPC, with an average particle size of 800 nm, possesses a porous structure and large specific surface area of 258.82 cm2 g– 1. As anodes for Li/Na/K-ion batteries (LIBs/NIBs/KIBs), the PPC matrix exhibited large initial reversible capacity, fast rate capability (LIB: ~ 320 mAh g– 1 at 3C; NIB: ~ 140 mAh g– 1 at 2C; KIB: ~ 110 mAh g– 1 at 2C), better cyclic performance (LIB: ~ 550 mAh g– 1; NIB: ~ 210 mAh g– 1; KIB: ~ 190 mAh g– 1 at 0.2C over 100 cycles), high ionic diffusivity, and excellent structural robustness upon cycling, which demonstrates that the PPC matrix can be highly used as a carbon matrix for high-capacity alloy-based anode materials for LIBs/NIBs/KIBs.
To improve the thermophysical properties of Al alloy for thermal management materials, the Cu-coated carbon fibers (CFs) were used as reinforcement to improve the thermal conductivity (TC) and the coefficient of thermal expansion (CTE) of Al-12Si. The CFs reinforced Al matrix (CFs/Al) composites with different CFs contents were prepared by stir casting. The effects of the CFs volume fraction and Cu coating on the microstructure, component, TC and CTE of CFs/Al composites were investigated by scanning electron microscopy with EDS, X-ray diffraction, thermal dilatometer and thermal dilatometer. The results show that the Cu coating can effectively improve the interface between CFs and the Al-12Si matrix, and the Cu coating becomes Al2Cu with Al matrix after stir casting. The CFs/Al composites have a relative density greater than 95% when the volume fraction of CFs is less than 8% because the CFs uniform dispersion without agglomeration in the matrix can be achieved by stir casting. The TC and CTE of CFs/Al composites are further improved with the increased CFs volume fraction, respectively. When the volume fraction of CFs is 8%, the CFs/Al composite has the best thermophysical properties; the TC is 169.25 W/mK, and the CTE is 15.28 × 10– 6/K. The excellent thermophysical properties of CFs and good interface bonding are the main reasons for improving the thermophysical properties of composites. The research is expected to improve the application of Al matrix composites in heat dissipation neighborhoods and provide certain theoretical foundations.