검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 32

        5.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Electrochemical oxidation and reduction reactions are fundamental in various conversion and energy storage devices. Functional materials derived from MOFs have been considered promising as electrical catalysts for ORR, HER, and OER, which can be used in Zinc-air batteries and water electrolysis. Herein, we designed a novel approach to fabricating the ultrafine Co9S8 embedded nitrogen-doped hollow carbon nanocages ( Co9S8@N-HC). The method involved a process of sulfidation of cobalt-based metal–organic frameworks (ZIF67) and then coating them with polypyrrole (PPy). PPy has notable properties such as high electrical conductivity and abundant nitrogen content, rendering it highly promising for catalytic applications. The Co9S8@ N-HC catalyst was successfully synthesized via the carbonization of CoSx@ PPy. Remarkably, the Co9S8@ N-HC catalyst demonstrated exceptional electrocatalytic activity, requiring only low overpotentials of 285 mV and 201 mV at 10 mA cm‒ 2 for OER and HER, respectively, and exhibited high activity for ORR, with an onset potential ( Eonset) of 0.923 V and half-wave potential ( E1/2) of 0.879 V in alkaline media. The electrocatalytic efficiency displayed by Co9S8@ N-HC opens a new line of research on the synergistic effect of MOF-PPy materials on energy storage and conversion.
        4,200원
        6.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Herein, facile room-temperature self-assembly and high-temperature pyrolysis strategy was successively conducted for in situ synthesizing novel TiO2/ TiN@N-C heterostructure by using typical sandwich-like precursors (MXene/ZIF-8). Zerodimensional (0D) TiO2, TiN and N-doped carbon nanoparticles were in situ formed and randomly anchored on the twodimensional (2D) N-doped carbon substrate surface, making TiO2/ TiN@N-C exhibit unique 0D/2D heterostructure. Relative to the extensively studied ZIF-8-derived N-doped carbon nanoparticles, TiO2/ TiN@N-C heterostructure displayed greatly boosted electrochemical active specific surface. Benefiting from the enhanced electrochemical property of TiO2/ TiN@N-C heterostructure, remarkable signal enhancement effect was achieved in terms of the oxidation of multiple hazardous substances, including clozapine, sunset yellow and benomyl. As a result, a novel electrochemical platform was constructed, the linear detection range were 10–1000 nM, 2.5–1250 nM, 10–1000 nM while the detection limits were evaluated to be 3.5 nM, 1.2 nM, 4.5 nM for clozapine, sunset yellow and benomyl, respectively. Besides, the practicability of the newly developed electrochemical method was verified by assessing the content of clozapine, sunset yellow and benomyl in real food samples.
        4,300원
        8.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The complexation of silicon with carbon materials is considered an effective method for using silicon as an anode material for lithium-ion batteries. In the present study, carbon frameworks with a 3D porous structure were fabricated using metal–organic frameworks (MOFs), which have been drawing significant attention as a promising material in a wide range of applications. Subsequently, the fabricated carbon frameworks were subjected to CVD to obtain silicon-carbon complexes. These siliconcarbon complexes with a 3D porous structure exhibited excellent rate capability because they provided sufficient paths for Li-ion diffusion while facilitating contact with the electrolyte. In addition, unoccupied space within the silicon complex, combined with the stable structure of the carbon framework, allowed the volume expansion of silicon and the resultant stress to be more effectively accommodated, thereby reducing electrode expansion. The major findings of the present study demonstrate the applicability of MOF-based carbon frameworks as a material for silicon complex anodes.
        4,500원
        11.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        유기 전구체와 금속 이온, 또는 금속-옥소 클로스터 간의 규칙적 배열을 통한 종의 다양성을 장점으로 하는 금속- 유기 골격체(Metal-Organic Frameworks, MOFs)는 에너지 사용량이 높은 상변화 기반 분리공정을 대체할 수 있는 에너지 효율 적인 막 기반 분리 기술의 개발 가능성을 열어주었다. 이에 최근 10년 동안 다결정 MOFs 분리막 합성 기술에서 상당한 진전 이 있었지만, 매우 제한된 종류의 MOFs만이 활용되고 있다. 이러한 기술 개발의 정체는 다결정 분리막의 비 선택적인 확산 경로인 결정 사이 결함(intercrystalline defects)에 대한 명확한 해결법이 없기 때문이다. 후처리 성능 제어기술(postsynthetic modifications, PSMs)은 기존 분리막을 플랫폼으로 활용하고 이를 물리적 그리고/혹은 화학적으로 처리함을 통해 분리 특성 을 개선 혹은 변경하는 기술을 말한다. PSMs 기술은 특정 분리막을 개발하는 데 있어서 새로운 MOFs를 설계하거나 막 합성 기술을 개발하지 않아도 된다는 장점이 있어서 다결정 MOF 분리막의 다양성을 제공하기 위한 새로 부상하는 전략으로 평가 된다. 본 총설에서는 PSMs 기술을 7개의 세부기술((1) 공유결합법, (2) 결정간 결함 플러깅법, (3) 결정 내부 결함 치유법, (4) 기공내 기능성 소재 함침법, (5) 기공 경화법, (6) 전구체 치환법 및 (7) 비정질화법)로 분류하고, 각 세부기술의 연구 동향 및 도전과제 그리고 향후 연구 방향에 대해 논의하고자 한다.
        5,400원
        13.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A porous-carbon material UiO-66-C was prepared from metal–organic frameworks UiO-66 by carbonization in inert gas atmosphere. Physicochemical properties of UiO-66-C materials were well characterized by Powder X-ray diffraction (PXRD), Scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FT-IR), Raman spectrometer, N2 adsorption/ desorption isotherms (BET), and the adsorption properties of the products were studied UiO-66-C has a high specific surface area up to 1974.17 m2/ g. Besides, the adsorption capacity of tetracycline could reach 678.19 mg/g, the adsorption processes agreed well with the pseudo-second-order kinetic model and Langmuir isotherm model.
        4,000원
        16.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We have prepared MIL-101/graphene oxide (GO) composites with various mixing molar ratio of Fe-containing metal– organic frameworks (MOFs) against GO. When synthesizing MOFs, it was possible to synthesize uniform crystal powders using hydrothermal method. MIL-101 consists of a terephthalic acid (TPA) ligand, with the central metal composed of Fe, which was the working electrode material for supercapacitors. Field emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analysis had been done to ascertain microstructures and morphologies of the composites. Cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge measurements were performed to analyze the electrochemical properties of the composite electrodes in 6 M KOH electrolyte. By controlling the metal ligand mole ratio against GO, we prepared a changed MOF structure and a different composite morphology, which could be studied as one of the promising optimized electrode materials for supercapacitors.
        4,200원
        17.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Metal–organic frameworks (MOFs) are widely used as supports for single-atom catalysts (SACs) owing to their high specific surface area, porosity, and ordered metal–ligand structure. Their activity can be increased by increasing the number of electrochemically accessible active sites via the formation of atomically dispersed metal catalysts (M–Nx) that coordinate with nitrogen atoms on the MOF. Herein, we introduce the relationship between the size of the MOF as a starting material and the catalytic activity for the oxygen reduction reaction in alkaline media. The morphology and features of the MOFs are critically dependent on their size. Remarkably, cage-like MOFs below 33 nm are converted into collapsed structures and are connected between each MOF, even carbon fiber- or tube-like features, after carbonization. SACs derived from medium-sized MOFs exhibit excellent activity and are comparable to commercial Pt/C catalysts owing to their porous structure. Therefore, we believed that controlling the size of MOFs containing active atoms is an effective method of modulating the morphological properties of the support and even the number of active sites that are closely related to the activity.
        4,000원
        1 2