검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        1.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Landfills are nettlesome sources of malodorous gases as well as methane that has the second largest radiative forcing of long residence-greenhouse gases, followed carbon dioxide. Because methane and malodorous gases are simultaneously emitted in landfills, investigation of whether or not methane and malodorous gases affect each other’s degradation is important. Amines such as monomethylamine(MMA), dimethylamine(DMA) and trimethylamine(TMA) are representative malodorous gases from landfills. In this study, the effect of amines on the bio-oxidation of methane was evaluated using a methane-oxidizing consortium where the dominant bacteria were Methylocystis spp. Amines inhibited the methane oxidation by the consortium, and the inhibition effect increased in the order of TMA > DMA > MMA. Methane oxidation rates in the consortium decreased with increasing amine/methane ratio(mol/mol). These results can be used to design and optimize the biological processes for simultaneous removal of methane and malodorous gases.
        4,000원
        2.
        2014.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Methanol was directly produced by the partial oxidation of methane with four-component mixed oxide catalysts. Four-component(Mo-Bi-Cr-Si) mixed oxide catalysts were prepared by the co-precipitation and sol-gel methods. The catalyst prepared by the sol-gel method showed about eleven times higher surface area than that prepared by the co-precipitation method. From the O2-TPD experiment of the prepared catalysts, it was proven that there exists two types of oxygen species, and the oxygen species that participates in the partial oxidation reaction is the lattice oxygen desorbing around 750℃. The optimum reaction condition for methanol production was 420°C, 50 bar, flow rate of 115 mL/min, and CH4/O2 ratio of 10/1.5, providing methane conversion and methanol selectivity of 3.2 and 26.7%, respectively.
        4,000원
        3.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        페롭스카이트 촉매와 Mo, Bi를 기본으로 하는 복합 산화물 촉매를 이용하여 천연가스의 주성분인 메탄의 부분산화를 통하여 메탄올을 직접 합성하였다. 페롭스카이트(ABO₃) 촉매는 A 및 B site 성분을 변화시키면서 사과산법으로 제조하였으며, Mo, Bi를 기본으로 하는 3성분계 복합 산화물 촉매는 공침법으로 제조하여 반응특성을 살펴보았다. 페롭스카이트 촉매에서 A site에 알칼리 금속인 Sr을, B site에 전이금속인 Cr을 도입한 SrCrO₃ 촉매가 400℃에서 메탄올 선택도 11%로 가장 우수한 결과를 보였다. Mo, Bi를 기본으로 하는 3성분계 복합 산화물 촉매의 경우 모든 촉매에서 메탄 전환율에는 큰 차이를 보이지 않았으며, Cr을 첨가한 Mo-Bi-Cr 복합 산화물 촉매가 400℃에서 메탄올 선택도 15.3% 로 가장 우수한 결과를 나타냈다. 3성분계 복합 산화물 촉매에서 촉매의 활성과 메탄올 선택도는 촉매의 표면적에 정비례하였다.
        4,000원
        4.
        2010.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effects of La addition to Ni/CeO2 methane partial oxidation catalysts were investigated. Catalysts were prepared by the impregnation and urea methods. In the preparation of catalysts, La content was changed from 1 wt% to 3wt%. Catalysts that contain 2wt% La showed the highest methane conversion of about 80% and CO selectivity of 84% and H2 selectivity of 70%. This result may be stemmed from that, when La content is 2wt%, a fluorite oxide-type structure is well formed and carbon deposition is also decreased. Among the catalysts, 2.5wt% Ni/Ce(La)Ox showed the highest catalytic activity. From the experiment of changing reaction temperature with 2.5wt% Ni/Ce(La)Ox catalyst, it was found that the optimum reaction temperature is 750℃ and at this temperature methane conversion was about 90%, CO and H2 selectivities were 94 and 80%, respectively.
        4,000원
        5.
        2006.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Methanol and formaldehyde were produced directly by the partial oxidation of methane over mixed oxide catalysts. The catalysts were composed of Mo and Bi with late-transition metals, such as Mn, Fe, and Co. The reaction was carried out at 450℃, 50 bar in a fixed-bed differential reactor. The prepared catalysts were characterized by O2-TPD and BET apparatus. Among the catalysts used, the catalyst composed of 1:1:2.5 molar ratio of Mo:Bi:Mn showed the best methane conversion and methanol selectivity. The change in ratio of methane to oxygen affected at the conversion and selectivity, and the most proper ratio was 10:1.5. Methane conversion, methanol and formaldehyde selectivities increased with the surface areas of the catalysts. From the O2-TPD result, it was found that the oxygen species responsible for this reaction might be the lattice oxygen species desorbed at high temperature around 800℃.
        4,000원
        6.
        2006.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Methanol and formaldehyde were produced directly by the partial oxidation of methane. The catalysts used were mixed oxides of late-transition metals, such as Mn, Fe, Co, Ni and Cu. The reaction was carried out at 450℃, 50 bar in a fixed-bed differential reactor. The prepared catalysts were characterized by XRD, TPD and BET apparatus. Of the catalysts, A-Mn0.2-6, which contains 0.2 mole of Mn and calcined at 600℃, showed the best catalytic activity: 3.7% methane conversion, and 30 and 28% methanol and formaldehyde selectivities, respectively. The catalytic activity was changed with the content of Mn and the calcination temperature. Catalytic activity increased with the specific surface areas of the catalysts. With XRD, it was found that the structure of the catalysts are changed with calcination temperature. Through O2-TPD experiment, it was found that the catalysts showing good catalytic activity showed O2 desorption peak around 800℃.
        4,000원
        7.
        2005.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Methanol was synthesized by homogeneous and catalytic reactions of partial oxidation of methane. The effect of pressure, temperature and oxygen concentration on methanol synthesis was investigated. The catalyst used was Bi-Cs-Mg-Cu-Mo mixed oxide. The partial oxidation reaction was carried out in a fixed bed reactor at 20~46 bar and 450~480℃ and oxygen concentration of 5.3~7.7mol%. The results were compared with results of homogeneous reaction performed at the same conditions. Methane conversions of the homogeneous and catalytic reactions increased with temperature. Methanol selectivity of the homogeneous reaction decreased with increasing temperature. However, the methanol selectivity of catalytic reaction increased with temperature. For both homogeneous and catalytic reactions, the methane conversions were around 5%. This may be due to the low oxygen concentration. Methanol selectivity of the catalytic reaction was higher than that of homogeneous one.
        4,000원
        8.
        2000.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The oxidation of methane was carried out in six different configurations of plasma reactors in order to study the radical reactions inside and outside of the plasma zone and to explore the method to control them. Various radicals and reactive molecules, such as CH, CH2, CH3, H, and O(from O2) were generated in the plasma. A variety of products were produced through many competing reaction pathways. Among them. partial oxidation products were usually not favored, because the intermediates leading to the partial oxidation products could be oxidized further to carbon dioxides easily. It is important to control the free radical reactions in the plasma reactor by controlling the experimental conditions so that the reactions leading to the desired products are the major pathways
        4,000원
        9.
        2018.05 서비스 종료(열람 제한)
        기후 변화가 점차 가속되는 현 상황에서 온실가스를 줄이고자 하는 연구가 활발히 진행되고 있다. 특히 우리나라에서 발생하는 메탄가스 배출량은 2014년 기준 26.6백만톤 CO2eq 수준으로, 이중 약 27% (약 7.3 백만톤 CO2eq)는 폐기물 매립지에서 유출되고 있다. 또한, 국내 230개소의 매립지 중 대규모 매립지 17개 시설에서만 매립가스 자원화 시설을 운영하고 있으며, 매립지에서 발생하는 메탄의 29%만을 자원화로 이용하고 있다. 나머지 중소규모매립지를 포함하여 71%의 메탄은 무방비 상태로 대기상으로 유출되고 있다. 기존의 매립지 가스 처리방법으로는 매립가스에 포함된 메탄을 회수하여 에너지화하는 ‘매립가스자원화’ 및 매립가스를 소각처리하는 ‘연소방식’으로 구분할 수 있다. 매립가스자원화는 메탄가스 농도가 30%~40% 이상이고 매립가스 발생량이 2~3Nm3/min이상이어야 하는 단점이 있으며, 대규모 매립지에서만 경제성이 확보되는 한계가 있다. 연소처리는 중소규모 매립지에서도 적용은 가능하지만, 가스 포집 시설의 설치가 필요하고 처리 효율이 낮으며, 불완전 연소로 인해 다이옥신 등이 발생하는 단점이 있다. 매립지 규모별 메탄가스의 처리기술의 경제성을 비교하였을 때 매립지 규모에 상관없이 생물학적 산화기술이 연소처리에 비해 저비용으로 메탄을 처리할 수 있는 것으로 확인되었으며 폐기물 매립량이 600,000톤 이하인 경우에는 매립가스자원화보다도 경제적임을 확인할 수 있다. 생물학적 산화 시스템은 유럽 등에서는 중소규모 매립지에서의 탄소중립을 위하여 제시되었으며, 매립지 복토층에 서식하는 미생물을 이용하여 메탄을 이산화탄소로 산화시키는 기술이다. 미생물 복토층을 최적의 서식 조건으로 조성함으로써 메탄산화 효율을 증진시킬 수 있으며, 미생물의 메탄 산화 속도 및 매립 가스 발생량에 따라 메탄저감 효율이 좌우되며, 매립가스 발생량이 적은 경우 100%까지도 산화가 가능한 바이오필터와 같이 인위적인 메탄산화 시스템을 운영할 수도 있다. 이에 본 연구는 매립토, 퇴비, 부숙토 3가지의 시료를 대상으로 회분식 실험을 통해 메탄산화균의 활성도를 파악하였다. 또한 실험결과, 메탄산화가 가장 우수한 매립토를 대상으로 메탄산화균을 분리배양 하였으며, 이후 연속식 실험을 통해 메탄산화균의 메탄산화속도를 평가하였다.
        10.
        2016.10 KCI 등재 서비스 종료(열람 제한)
        The objective of this study was to determine the CH4 oxidation factor (%) and the CH4 oxidation rate (g m−2 d−1) in landfill cover soil. To quantify in-situ rates of CH4 oxidation, CH4 and CO2 fluxes were measured on a landfill site using the static chamber technique. The CH4 oxidation factor obtained in this study through the mass balance method ranged between 41% and 61%, which is much higher than the Intergovernmental Panel on Climate Change (IPCC) default value of 10%. The higher CH4 oxidation factor derived in this study can be explained by the CH4 bottom flux in addition to the soil texture. The CH4 oxidation factors were observed to increase with decreases in CH4 bottom flux. Therefore, when CH4 bottom fluxes are high in a landfill, using a gas collection system can enhance CH4 oxidation factor. The CH4 oxidation rates were estimated to range from 16.6 g m−2 d−1 to 20.8 g m−2 d−1. In addition, this study was conducted to evaluate the effects of vegetation on the CH4 oxidation factor. The results showed that the CH4 oxidation factors for bare soil, vegetated soil, and soil adjacent to a gas well were 57%, 70%, and 44%, respectively. The results indicate that vegetation on landfill covers can increase the CH4 oxidation factor because of increasing soil porosity.