The optical film for light luminance improvement of back light unit that is used in light emitting diode/liquid crystal display and retro-reflective film is used as luminous sign consist of square and triangular pyramid structure pattern based on V-shape micro prism pattern. In this study, we analyzed machining characteristics of Cu-plated flat mold by shaping with diamond tool. First, cutting conditions were optimized as V-groove machining for the experiment of micro prism structure mold machining with prism pattern shape, cutting force and roughness. Second, the micro prism structure such as square and triangular pyramid pattern were machined by cross machining method with optimizing cutting conditions. Variation of Burr and chip shape were discussed by material properties and machining method.
To fabricate a precise micro metal mold, the electrochemical etching process has been researched. We investigated the electrochemical etching process numerically and experimentally to determine the etching tendency of the process, focusing on the current density, which is a major parameter of the process. The finite element method, a kind of numerical analysis, was used to determine the current density distribution on the workpiece. Stainless steel(SS304) substrate with various sized square and circular array patterns as an anode and copper(Cu) plate as a cathode were used for the electrochemical experiments. A mixture of H2SO4, H3PO4, and DIW was used as an electrolyte. In this paper, comparison of the results from the experiment and the numerical simulation is presented, including the current density distribution and line profile from the simulation, and the etching profile and surface morphology from the experiment. Etching profile and surface morphology were characterized using a 3D-profiler and FE-SEM measurement. From a comparison of the data, it was confirmed that the current density distribution and the line profile of the simulation were similar to the surface morphology and the etching profile of the experiment, respectively. The current density is more concentrated at the vertex of the square pattern and circumference of the circular pattern. And, the depth of the etched area is proportional to the current density.
This paper describes the manufacturing process of tilting pad gas bearing with a diameter of 5 mm and a length of 0.5-1 mm for power MEMS (Micro Electomechanical Systems) applications. The bearing compacts with nanopowder feedstock were prepared by Ni-metal mold with 2-mold system using LIGA process. The effect of the manufacturing conditions on sintering properties of nanopowder gas bearing was investigated. In this work, Fe-45 wt%Ni nanopowder with an average diameter of 30-50 nm size was used as starting material. After mixing the nanopowder and the wax-based binders, the amount of powder was controlled to obtain the certain mixing ratio. The nanopowder bearing compacts were sintered with 1-2 hr holding time under hydrogen atmospheres and under temperatures of to . Finally, the critical batch of mixed powder system was found to be 70% particle fraction in total volume. The maximum density of the sintered bearing specimen was about 94% of theoretical density.
Novel polymer mold process for fabrication of microcomponents using metal nanopowders was developed and experimentally optimized. Polymer mold for forming green components was produced by using a hard master mold and polydimethylsiloxane (PDMS). In the preparation of metallic powder premix for the green components without any defect, 90 wt.% 17-4PH statinless steel nanopowders and 10 wt.% organic binder were mixed by a ball milling process. The green components with very clear gear shape were formed by filling the powder premix into the PDMS soft mold in surrounding at about . Cold isostatic pressing (CIP) was very potent process to decrease a porosity in the sintered microcomponent. The microgear fabricated by the improved process showed a good dimension tolerance of about 1.2%.
New powder compaction process, in which a Bingham semi-solid/fluid mold is utilized, is developed to fabricate micro parts. In the present process, a powder material is filled as slurry in a solid wax mold, dried and compressed. The wax is heated during compaction and becomes semi-solid state, which can acts as a pressurized medium for isostatic compaction. Since the compacted micro parts are very fragile, the mold's temperature is controlled to higher than its melting point during unloading, to avoid breakage of the compacts. To demonstrate effectiveness of this process, some micro compacts of alumina are shown as examples.