Tungsten-molydiside was synthesized by self-propagating high temperature synthesis (SHS). The SHS product with the initial composition of (0.5Mo+0.5W+2Si) contains 23.9% , 40.89% with remaining 9.11% Mo, 9.16% Si and 16.94%W. Lattice parameters of the and determined by Rietvelt analysis were a=0.3206 nm, c=0.7841 nm and a=0.3212 nm, c=0.7822 nm, respectively.
The oxidation of (W,Mo) powders has been investigated at 400, 500 and for 12.0 hours in air. It was shown that the low temperature oxidation resistance of (W,Mo) was worse than that of , and they showed great changes in mass, volume and colour. Especialy at , the amount of volume expansion of (W,Mo) was as high as about times and color changed from black to yellow after 4.0h with , , (W,Mo) and amorphous as main reaction products. The mass gain and oxidation rate were relatively slower at and than that at .
자전고온합성반응법을 이용하여 이규화 몰리브덴-텅스텐(Mo1-z , Wz)Si2을 합성하였다. 조성 (z)을 변화시켜 성형한 원통형 시편에 합성반응 중 전달되는 온도변화를 예측하기 위하여 시편의 중앙에 열전대를 삽입하였다. 반응 선단면이 열전대를 통과할 때 가장 높은 반응온도를 보이고 이것을 단열반응 온도라 간주하였다. 따라서 본 연구에서는 이러한 온도변화를 예측하기 위하여 자전조온합성반응의 모델링을 계시하고자 하였으며, 실험을 통하여 측정한 반응온도 분포곡선의 거동을 비교하였다. 각각의 시료에 대한 실험결과 측정된 반응속도는 약 2.14~1.35mm/sec, 반응온도는 1883K~1507K의 간을 보였다. 두 항 모두 텅스텐의 함량이 증가함에 따라 감소하는 경향을 나타냈으며, 수치해석을 통하여 거의 유사한 반응온도를 얻었다. 시료의 초기온도를 증가시킬 경우 반응온도는 증가함이 예측되었고, z=0.5인 시료에 대하여 반응온도가 1900k 이상이 되기 위해서는 약 800K-900K의 예열이 필요하였다.