검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 571

        11.
        2025.06 구독 인증기관 무료, 개인회원 유료
        The primary objective of the study is to analyze and evaluate the situation and trends of inland waterway traffic accidents in Vietnam from 2017 to 2024. The study employs reliable secondary data sources, which are analyzed using statistical methods and heatmap applications to examine and assess trends in inland waterway traffic accidents in Vietnam. The results indicate a steady increase in both the number and scale of inland waterway accidents nationwide over the years. Additionally, the accident-prone areas in key inland waterways will be identified. Based on these findings, the research team has proposed recommendations and solutions aimed at improving traffic safety on Vietnam's inland waterways.
        4,000원
        15.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Wheat (Triticum aestivum L.), a significant cereal crop from the Gramineae family, serves as a vital source of protein, essential minerals, B-group vitamins, and dietary fiber. However, its productivity is often hindered by issues such as poor seed germination, which can adversely affect yield and crop quality. This study investigated the effects of different silicon concentrations and priming durations on wheat germination and seedling growth. Analysis of variance revealed that silicon treatment significantly influenced key parameters of germination and growth, including germination percentage (GP), germination index (GI), vigor index (VI), radicle length (RL), plumule length (PL), and seedling dry weight (SDW). Priming with silicon at a concentration of 1 mM resulted in notable improvements, increasing GP, GI, VI, RL, and PL by 10.6%, 65.5%, 29.4%, 18.6%, and 28.6%, respectively, after 6 hours of priming. Certain germination traits demonstrated strong positive correlations, particularly GP and GI (r = 0.96) and VI and RL (r = 0.94), after 4 hours of priming. These improvements in seed germination and seedling development may result from enhanced water uptake, stimulated cell division, and increased hydrolytic enzyme activity, which facilitate the mobilization of seed reserves and accelerate the growth of embryonic tissues.
        4,800원
        16.
        2024.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Diamond/SiC composites were prepared by vacuum silica vapor-phase infiltration of in situ silicon–carbon reaction, and the thermophysical properties of the composites were modulated by controlling diamond graphitizing. The effects of diamond surface state and vacuum silicon infiltration temperature on diamond graphitization were investigated, and the micromorphology, phase composition, and properties of the composites were observed and characterized. The results show that diamond pretreatment can reduce the probability of graphitizing; when the penetration temperature is greater than 1600 °C, the diamond undergoes a graphitizing phase transition and the micro-morphology presents a lamellar shape. The thermal conductivity, density, and flexural strength of the composites increased and then decreased with the increase of penetration temperature in the experimentally designed range of penetration temperature. The variation of thermal expansion coefficients of composites prepared with different penetration temperatures ranged from 0.8 to 3.0 ppm/K when the temperature was between 50 and 400 °C.
        4,300원
        17.
        2024.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Graphitic nitrogen-doped carbon film/nanoparticle composite, in which the films were wrapped and separated by the nanoparticles, was prepared through a simple co-calcination route. Due to its unique porous structure and improved nitrogen content, the as-prepared electrode material could exhibit high specific capacitances of 317.5 F g− 1 at 0.5 A g− 1 and 200.0 F g− 1 at 20 A g− 1, and stable cycling behavior with no capacitance decline after 10,000 cycles in three-electrode system. When assembled in two-electrode capacitor, its specific capacitance could be well kept at 265.5 F g− 1 at 0.5 A g− 1, and thus the supercapacitor with a high energy density of 9.22 Wh kg− 1 was obtained. The superior energy storage properties of the as-prepared material indicate its promising application as high-performance carbon-based electrode for supercapacitors.
        4,300원
        1 2 3 4 5