One-dimensional MgO nanostructures with various morphologies were synthesized by a thermal evaporation method. The synthesis process was carried out in air at atmospheric pressure, which made the process very simple. A mixed powder of magnesium and active carbon was used as the source powder. The morphologies of the MgO nanostructures were changed by varying the growth temperature. When the growth temperature was 700 °C, untapered nanowires with smooth surfaces were grown. As the temperature increased to 850 °C, 1,000 °C and 1,100 °C, tapered nanobelts, tapered nanowires and then knotted nanowires were sequentially observed. X-ray diffraction analysis revealed that the MgO nanostructures had a cubic crystallographic structure. Energy dispersive X-ray analysis showed that the nanostructures were composed of Mg and O elements, indicating high purity MgO nanostructures. Fourier transform infrared spectra peaks showed the characteristic absorption of MgO. No catalyst particles were observed at the tips of the one-dimensional nanostructures, which suggested that the one-dimensional nanostructures were grown in a vapor-solid growth mechanism.
본 연구는 코팅 방법을 활용한 단결정 양극 소재 연구로서 Ni-rich계 다결정 양극 소재로 부터 단결정 양극 소재를 합 성하여 사이클 구동 시 양극 소재의 안정성을 향상시키고자 한다. 양극 소재에 LixCoO2와 LixSnO3 를 각각 코팅하여 이차입자 내부 혹은 외부에 코팅층이 형성된 양극 소재를 합성한 후 이를 소결하여 단결정 형성에 대한 영향을 비교 하였다. 입자 외부에 LixSnO3가 코팅되어 열처리 된 Ni0.8Co0.1Mn0.1O2(NCM811)의 경우 코팅 처리 없이 열처리된 양극 소재 보다 개선된 수명특성을 보였으나, 단결정화가 이뤄지지 않았다. 입자 내부에 LixCoO2 코팅층이 형성된 NCM811 을 열처리 한 결과 이차입자 내부에 형성된 Co 코팅층이 결정화되어 50회 사이클 후 기준 단결정 양극 소재의 방전용 량인 117.34 mAh·g-1 대비 129.11 mAh·g-1의 높은 방전용량을 나타내었고, 형상제어를 통해 이성적인 단결정화가 이뤄 졌다. 본 연구는 다결정체인 Ni-rich 양극소재의 단결정화에 대한 유요한 통찰력을 제공할 것으로 예상한다.
In this study, Fe–Mo–MgO catalysts for the synthesis of carbon nanotubes (CNTs) were prepared using the combustion method and CNTs were synthesized through catalytic chemical vapor deposition. The combustion time was controlled to 0.5, 1, 2, 3, 5, 10, and 24 h in the catalyst preparation stage. The residual carbon contents after the combustion stage and the morphologies of synthesized CNTs were also analyzed. The diameter, yield, and crystallinity of the synthesized CNTs were found to remarkably vary according to the combustion time in the catalyst preparation process. The amount of residual carbon in the catalyst considerably affects the purity, crystallinity, diameter and its distribution, and wall number of CNTs. Based on the yield and crystallinity, CNTs synthesized using the catalyst with a combustion time of 3 h were determined to be the most appropriate for application in field emitters
In this study, AlSi10Mg powders with average diameters of 44 μm are additively manufactured into bulk samples using a selective laser melting (SLM) process. Post-heat treatment to reduce residual stress in the as-synthesized sample is performed at different temperatures. From the results of a tensile test, as the heat-treatment temperature increases from 270 to 320oC, strength decreases while elongation significantly increases up to 13% at 320oC. The microstructures and tensile properties of the two heat-treated samples at 290 and 320oC, respectively, are characterized and compared to those of the as-synthesized samples. Interestingly, the Si-rich phases that network in the as-synthesized state are discontinuously separated, and the size of the particle-shaped Si phases becomes large and spherical as the heat-treatment temperature increases. Due to these morphological changes of Si-rich phases, the reduction in tensile strengths and increase in elongations, respectively, can be obtained by the post-heat treatment process. These results provide fundamental information for the practical applications of AlSi10Mg parts fabricated by SLM.
ZnO micro/nanocrystals are formed by a vapor transport method. Mixtures of ZnO and TiO powders are used as the source materials. The TiO powder acts as a reducing agent to reduce the ZnO to Zn and plays an important role in the formation of ZnO micro/nanocrystals. The vapor transport process is carried out in air at atmospheric pressure. When the weight ratios of TiO to ZnO in the source material are lower than 1:2, no ZnO micro/nanocrystals are formed. However, when the ratios of TiO to ZnO in the source material are greater than 1:1, the ZnO crystals with one-dimensional wire morphology are formed. In the room temperature cathodoluminescence spectra of all the products, a strong ultraviolet emission centered at 380 nm is observed. As the ratio of TiO to ZnO in the source material increases from 1:2 to 1:1, the intensity ratio of ultraviolet to visible emission increases, suggesting that the crystallinity of the ZnO crystals is improved. Only the ultraviolet emission is observed for the ZnO crystals prepared using the source material with a TiO/ZnO ratio of 2:1.
In the present study, we develop a conductive copper/carbon nanomaterial additive and investigate the effects of the morphologies of the carbon nanomaterials on the conductivities of composites containing the additive. The conductive additive is prepared by mechanically milling copper powder with carbon nanomaterials, namely, multi-walled carbon nanotubes (MWCNTs) and/or few-layer graphene (FLG). During the milling process, the carbon nanomaterials are partially embedded in the surfaces of the copper powder, such that electrically conductive pathways are formed when the powder is used in an epoxy-based composite. The conductivities of the composites increase with the volume of the carbon nanomaterial. For a constant volume of carbon nanomaterial, the FLG is observed to provide more conducting pathways than the MWCNTs, although the optimum conductivity is obtained when a mixture of FLG and MWCNTs is used.
In this study, cellulose nanoplates (CNPs) were fabricated using cellulose nanocrystals obtained from commercial microcrystalline cellulose (MCC). Their pyrolysis behavior and the characteristics of the product carbonaceous materials were investigated. CNPs showed a relatively high char yield when compared with MCC due to sulfate functional groups introduced during the manufacturing process. In addition, pyrolyzed CNPs (CCNPs) showed more effective chemical activation behavior compared with MCC-induced carbonaceous materials. The activated CCNPs exhibited a microporous carbon structure with a high surface area of 1310.6 m2/g and numerous oxygen heteroatoms. The results of this study show the effects of morphology and the surface properties of cellulose-based nanomaterials on pyrolysis and the activation process.
To investigate the effects of co-solvents on the morphology of nano-scale zein materials, zein solutions were electrospun with different co-solvent ratios of EtOH/H2O. Different zein solution concentrations were used to study the effects of the zein content on the electrospun materials. The resulting electrospun materials were all characterized using field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The diameters of the electrospun nanoparticles and nanofibers were found to increase when increasing the EtOH ratio at certain zein concentrations. Furthermore, increasing the zein content changed the morphology of the electrospun materials from nanoparticles to nanofibers.
Joining of NiO-YSZ to 316 stainless steel was carried out with B-Ni2 brazing alloy (3 wt% Fe, 4.5 wt% Si, 3.2 wt% B, 7 wt% Cr, Ni-balance, m.p. 971-) to seal the NiO-YSZ anode/316 stainless steel interconnect structure in a SOFC. In the present research, interfacial (chemical) reactions during brazing at the NiO-YSZ/316 stainless steel interconnect were enhanced by the two processing methods, a) addition of an electroless nickel plate to NiO-YSZ as a coating or b) deposition of titanium layer onto NiO-YSZ by magnetron plasma sputtering method, with process variables and procedures optimized during the pre-processing. Brazing was performed in a cold-wall vacuum furnace at . Post-brazing interfacial morphologies between NiO-YSZ and 316 stainless steel were examined by SEM and EDS methods. The results indicate that B-Ni2 brazing filler alloy was fused fully during brazing and continuous interfacial layer formation depended on the method of pre-coating NiO-YSZ. The inter-diffusion of elements was promoted by titanium-deposition: the diffusion reaction thickness of the interfacial area was reduced to less than 5 compared to 100 for electroless nickel-deposited NiO-YSZ cermet.
에멀션 기반의 계면활성제를 이용한 주형합성법을 이용하여 산촉매로서 염산과 실리카의 전구체인 테 트라에톡시실란을 사용함으로써 메조다공성 실리카 마이크로스피어를 합성하였다. 테트라에톡시실란의 농도 증가에 의해 구형의 입자 형태가 파괴되었고, 기공구조도 크게 변하였다. 산촉매 농도 증가에 의한 구형의 입자형태 파괴 현상은 적었지만 상대적으로 작은 크기의 구형의 마이크로입자가 더 많이 생성되 었다. 하지만, 산성조건에서 입자들 간의 강한 응집현상이 나타남에 따라 낱개의 분리되어 있는 단일입자 를 얻기 위해서는 초음파 등의 후처리 과정이 필요하였다.
Activated carbon (AC) with very large surface area has high capacitance per weight. However, such activation methods tend to suffer from low yields, below 50%, and are low in electrode density and capacitance per volume. Carbon NanoFibers (CNFs) had high surface area polarizability, high electrical conductivity and chemical stability, as well as extremely high mechanical strength and modulus, which make them an important material for electrochemical capacitors. The electrochemical properties of immobilized CNF electrodes were studied for use as in electrical double layer capacitor (EDLC) applications. Immobilized CNFs on Ni foam grown by thermal chemical vapor deposition (CVD) were successfully fabricated. CNFs had a uniform diameter range from 50 to 60 nm. Surface area was 56 m2/g. CNF electrodes were compared with AC and multi wall carbon nanotube (MWNT) electrodes. The electrochemical performance of the various electrodes was examined with aqueous electrolyte of 2M KOH. Equivalent series resistance (ESR) of the CNF electrodes was lower than that of AC and MWNT electrodes. The specific capacitance of 47.5 F/g of the CNF electrodes was achieved with discharge current density of 1 mA/cm2.
The influence of various surface morphologies on the mechanical strength of silicon substrates was investigated in this study. The yield for the solar cell industry is mainly related to the fracturing of silicon wafers during the manufacturing process. The flexural strengths of silicon substrates were influenced by the density of the pyramids as well as by the size and the rounded surface of the pyramids. To characterize and optimize the relevant texturing process in terms of mechanical stability and the fabrication yield, the mechanical properties of textured silicon substrates were investigated to optimize the size and morphology of random pyramids. Several types of silicon substrates were studied, including the planar type, a textured surface with large and small pyramids, and a textured surface with rounded pyramids. The surface morphology and a cross-section of the as-textured and fractured silicon substrates were investigated by scanning electron microscopy.
Some characteristics of the formations of acrosomal vesicles during the late stage of spermatids during spermiogenesis and taxonomical charateristics of sperm morphology in male two species (Saxidomus purpurata and Meretrix petechialis) in the family Veneridae were investigated by electron microscope observations. In two species, the morphologies of the spermatozoa have the primitive type and are similar to those of other bivalves in that it contains a short midpiece with five mitochondria surrounding the centrioles. The morphologies of the sperm nuclear types of S. purpurata and M. petechialis in Veneridae have the curved cylindrical and cylinderical type, respectively. And the acrosome shapes of two species are the same cap-shape type. In particular, the axial filament is not found in the lumen of the acrosome of two species, however, subacrosomal material are observed in the subacrosomal spaces between the anterior nuclear fossa and the acrosomal vesicle of two species. The axoneme of the sperm tail flagellum shows a 9+2 structure. In particular, taxonomically important some charateristics of sperm morphologies of two species in the family Veneridae are acrosomal morphology of the sperm, The axial filament is not found in the acrosome as seen in a few species of the family Veneridae in the subclass Heterodonta. The acrosomal vesicle is composed of right, left basal rings and the apex part of the acrosomal vesicle. These charateristics belong to the subclass Heterodonta, unlikely a characteristic of the subclass Pteriomorphia showing all part of the acrosome being composed of electron opaque part (region). Therefore, it is easy to distinguish the families or the subclasses by the acrosomal structures. The number of mitochondria in the midpiece of the sperm of S. purpurata and M. petechialis in Veneridae are five. However, the number of mitochondria in the midpiece of the sperm in most species of Veneridae in the subclass Heterodonta are four. Therefore, the number of mitochondria of the sperm midpiece of two species are exceptionally 5, and it is only exceptional case in the species in Veneridae in the subclass Heterodonta. Except these cases, the number of mitochondria in the sperm midpiece in all families in the subclass Heterodontaare are 4, and now widely used in taxonomic analyses.
본 논문에서는 사용자의 대응정보를 반영하여 소스 캐릭터와 다른 골격을 가진 타깃 캐릭터의 움직임을 생성하는 방법에 대하여 제안한다. 본 시스템을 통해 사용자는 소스 캐릭터의 제어할 부위와 타깃 캐릭터의 제어될 부위를 대응하여 타깃 캐릭터의 움직임을 생성할 수 있다. 우리는 골격에 제한 없이 타깃 캐릭터의 자세생성을 위해 대응자세의 쌍을 예제로 이용한다. 그리고 뼈의 수에 상관없이 자유롭게 관절의 대응을 제공하기 위해 방향벡터를 사용하여 관절의 구조를 간략화 한다. 최종적인 자세는 예제들의 가중치 합을 통해 생성된다. 본 논문의 실험적 결과를 통해 시스템이 실시간으로 골격이 다른 타깃 캐릭터의 기본적인 움직임을 생성하면서 또한 사용자가 지정한 부위의 외형적 움직임을 생성할 수 있음을 보인다.