The damage to structures during an earthquake can be varied depending on the frequency characteristics of seismic waves and the geological properties of the ground. Therefore, considering such attributes in the design ground motions is crucial. The Korean seismic design standard (KDS 17 10 00) provides design response spectra for various ground classifications. If required for time-domain analysis, ground motion time series can be either selected and adjusted from motions recorded at rock sites in intraplate regions or artificially synthesized. Ground motion time series at soil sites should be obtained from site response analysis. However, in practice, selecting suitable ground motion records is challenging due to the overall lack of large earthquakes in intraplate regions, and artificially synthesized time series often leads to unrealistic responses of structures. As an alternative approach, this study provides a case study of generating ground motion time series based on the hybrid broadband ground motion simulation of selected scenario earthquakes at sites in the Nakdonggang delta region. This research is significant as it provides a novel method for generating ground motion time series that can be used in seismic design and response analysis. For large-magnitude earthquake scenarios close to the epicenter, the simulated response spectra surpassed the 1000-year design response spectra in some specific frequency ranges. Subsequently, the acceleration time series at each location were used as input motions to perform nonlinear 1D site response analysis through the PySeismoSoil Package to account for the site response characteristics at each location. The results of the study revealed a tendency to amplify ground motion in the mid to long-period range in most places within the study area. Additionally, significant amplification in the short-period range was observed in some locations characterized by a thin soil layer and relatively high shear wave velocity soil near the upper bedrock.
The stochastic method is applied to simulate strong ground motions at seismic stations of seven metropolises in South Korea, creating an earthquake scenario based on the causative fault of the 2016 Gyeongju earthquake. Input parameters are established according to what has been revealed so far for the causative fault of the Gyeongju earthquake, while the ratio of differences in response spectra between observed and simulated strong ground motions is assumed to be an adjustment factor. The calculations confirm the applicability and reproducibility of strong ground motion simulations based on the relatively small bias in response spectra between observed and simulated strong ground motions. Based on this result, strong ground motions by a scenario earthquake on the causative fault of the Gyeongju earthquake with moment magnitude 6.5 are simulated, assuming that the ratios of its fault length to width are 2:1, 3:1, and 4:1. The results are similar to those of the empirical Green’s function method. Although actual site response factors of seismic stations should be supplemented later, the simulated strong ground motions can be used as input data for developing ground motion prediction equations and input data for calculating the design response spectra of major facilities in South Korea.
This study simulated strong ground motion waveforms in the southern Korean Peninsula, based on the physical earthquake modeling of the Southern California Earthquake Center (SCEC) BroadBand Platform (BBP). Characteristics of intensity attenuation were investigated for M 6.0-7.0 events, incorporating the site effects. The SCEC BBP is software generates broadband (0-10 Hz) ground-motion waveforms for earthquake scenarios. Among five available modeling methods in the v16.5 platform, we used the Song Model. Approximately 50 earthquake scenarios each were simulated for M 6.0, 6.5, and 7.0 events. Representative metrics such as peak ground acceleration (PGA) and peak ground velocity (PGV) were obtained from the synthetic waveforms that were simulated before and after the consideration of site effects (VS30). They were then empirically converted to distribution of instrumental intensity. The intensity that considers the site effects is amplified at low rather than high VS30 zones.
The empirical Green’s function method is applied to the foreshock and the mainshock of the 2016 Gyeongju earthquake to simulate strong ground motions of the mainshock and scenario earthquake at seismic stations of seven metropolises in South Korea, respectively. To identify the applicability of the method in advance, the mainshock is simulated, assuming the foreshock as the empirical Green’s function. As a result of the simulation, the overall shape, the amplitude of PGA, and the duration and response spectra of the simulated seismic waveforms are similar with those of the observed seismic waveforms. Based on this result, a scenario earthquake on the causative fault of Gyeongju earthquake with a moment magnitude 6.5 is simulated, assuming that the mainshock serves as the empirical Green’s function. As a result, the amplitude of PGA and the duration of simulated seismic waveforms are significantly increased and extended, and the spectral amplitude of the low frequency band is relatively increased compared with that of the high frequency band. If the empirical Green’s function method is applied to several recent well-recorded moderate earthquakes, the simulated seismic waveforms can be used as not only input data for developing ground motion prediction equations, but also input data for creating the design response spectra of major facilities in South Korea.
본 연구에서는 미국 남캘리포니아 지진센터에서 개발한 물리적 지진모델링 기반 광대역 강지진동 모사 플랫폼( 버전 16.5)을 활용하여, 규모 6.0, 6.5, 7.0 지진에 대한 진도 감쇠 특성 분석을 수행하였다. 지진 발생 위치는 2016년 규모 5.8 경주 지진 진앙 인근을 가정하였으나 지각 전파 모델의 경우 남캘리포니아 강지진동 모사 플랫폼에서 제공하 는 미국의 대표적인 지각 모델 두 개를 사용하였다. 하나는 판 내부를 대표하는 미국 중동부 지역(Central and Eastern United States, CEUS) 모델이고 다른 하나는 판의 경계를 대표하는 미 서부 지역(LA Basin) 모델이다. 버전 16.5 플랫 폼에는 5개의 모델링 방법론이 제시되고 있으며 본 연구에서는 Song 모델과 Exsim 모델을 사용하였다. 동일 규모의 지진이라 하더라도 지진발생 환경이 다른 지역(CEUS vs LA Basin)에서는 같은 진앙 거리에서 진도 2 등급에 가까운 차이가 발생할 수 있음을 본 연구를 통해서 발견하였다. 본 연구에서 나타난 지역별 진도 감쇠 특성의 차이를 감안할 때 한반도에서 좀 더 정밀한 지진재해 평가를 위해서는 지역에 적합한 진도 감쇠 특성을 이해하는 것이 중요할 것으로 판단되며 본 연구는 지역 특화된 진도 감쇠 특성을 고려하지 않을 경우 진도 감쇠 분포의 불확실성 정도를 잘 보여준다.
본 연구는 어선전복경보시스템 개발을 위해 어선의 횡동요 특성을 파악하고 시간영역 횡동요 운동 시뮬레이션을 수행한다. 어 선전복경보시스템의 검증을 위해서는 전복 상황을 가정하여 시험을 수행하고 실제 어선 계측을 수행해야 하지만, 상황의 위험성으로 인 해 현실적으로 불가능하다. 또한 많은 전복사고의 경우 횡동요와 밀접한 연관이 있는 것으로 조사되었다. 이에 따라 어선전복경보시스템 의 핵심인 어선의 횡동요특성을 정확히 파악하여 시간영역 기반 횡동요 시뮬레이션을 수행하고 해당 정보를 통해 시스템에 탑재된 경보 시스템의 알고리즘을 검증한다. 주요내용으로 첫째, 횡동요 운동 특성을 운동 시험을 통해 계측하고 파악한다. 특히 어선과 같은 소형선 박의 경우 CFD 및 포텐셜 코드를 포함한 해석적인 방법으로 점성과 관련된 횡동요 해석이 어렵다. 이에 따라 횡동요 운동 모드에 초점을 맞추어 운동 시험을 수행하고 횡동요 RAO를 도출한다. 둘째, 횡동요 RAO를 이용하여 Wave Spectrum과의 조합으로 시간영역 운동 시뮬레 이션을 수행하고 전복 경보 알고리즘을 검증한다.
Effect of ball filling ratio on the behavior of balls motion and their collision characteristic in a tumbler-ball milling of metal powder are investigated by a computer simulation. The discrete element method and the extended Kelvin model composed of nonlinear spring and nonlinear dashpot were employed in the simulation. It can be possible that analysis of the individual balls motion in a three-dimensional actual mill by the two-dimensional model simulation, since the simulated trajectories of ball paths are in relatively good agreement with the actual ones. It knows that the balls motion in the tumbler-ball mill is strongly influenced by the surface conditions of the balls and mill container wall. The energy consumption of the individual balls during impact and the impact frequency of the individual balls increased with an increase in the ball filling ratio and showed maximum values at about 50-60% ball filling ratio, and then decreased.
회전 불밀에 있어서 볼의 운동을 비선형 spring과 비선형 deshpot로 구성된 Kelvin모델을 사용한 DEM(Distinct Element Method;개별요소법)에 의하여 2차원으로 해석하였다. 모델에 있어서 점성계수는 볼과 밀벽사이의 반발실험 데이타로 부터 결정하였다. 각볼의 동적인 운동은 비선형 점탄성과 Newton의 운동법칙를 기초로하여 모사되었다. 밀이 회전하는 동안 볼의 궤적과 동적인 운동은 실제 실험에 의한 밀내에서의 볼의 운동고 잘 일치하였다. 본 연구에서 제안된 모델 시뮬레이션은 회전 볼밀내의 실제의 3차원인 볼의 운동에 대한 해석에 중요한 단서가 될 수 있었다. 볼의 운동고 운동에너지는 회전 볼밀의 속도와 볼의 충진율에 의해 크게 영향을 받았다.
본 연구에서는 HMD(Head Mounted Display)를 가지고 Walk-through의 이동시뮬레이션에 대한 평가를 실시하였다. 구체적으로는 VR공간 주변에 배치된 오브젝트 밀집정도(밀도)의 변화가 심리적 이동거리, 이동속도, 이동시간에 어떠한 영향을 미치는지 알아보았다. 연구결과 첫째, 실험 조건 (저밀도, 중밀도, 고밀도)에 있어 조건간의 차이는 모두 유의미하였다. 둘째, 주변 오브젝트의 밀도가 높아질수록 이동시간, 이동속도, 이동거리가 기본조건과 비교하여 평균점이 높게 나타났다. 셋째, 주변의 오브젝트가 VR공간의 이동시뮬레이션에 있어 시간, 속도, 거리의 감각을 향상 시키는 것을 확인하였다.
A design methodology for parametric design optimization of washing machine door is presented. We develop a motion simulator and a robotic door to simulate the various motion of washing machine doors. The motion of the washing machine door is related to hinge parameters. Springs and dampers are usually used in the hinge of washing machine door for controlling motion of the door. A physical simulator of the door motion is used for finding candidate parameters of the hinge and a robotic door whose motion is controlled algorithmically is used for consumer tests. Through the consumer evaluation on the robotic motion, the optimized parameters are determined. We find the optimal parameters as a function of angle and angular velocity of the door.
파티클 기반의 유체 시뮬레이션에서 파티클 들이 경계면에 부딪쳐 쇄파를 일으키는 경우 과도한 움직임으로 인해 자연스러운 흐름을 표현하기 어렵다. 파티클이 이동하는 시간 간격을 세분화하여 선형보간 함으로써 이 문제를 해결할 수 있다. 이렇게 하면 경계면에 모여 압력이 높아진 파티클 들의 가속도 벡터가 부드럽게 변한다. 하지만 보간을 하기위한 최소 샘플수가 높기 때문에 파티클 들이 점성을 가진 액체처럼 뭉치는 문제가 발생한다. 본 연구에서는 이 문제를 해결하기 가중치 보간 방식을 사용한다. 가중치 보간은 파티클의 현재 가속벡터와 이전 가속벡터에 서로 다른 가중치를 주며 차례로 더해 이동벡터를 구한다. 가중치 보간 방식을 쓰면 비슷한 흐름을 표현하는데 필요한 샘플수가 선형 보간 방식보다 적다. 그 결과로 점성을 가진 액체처럼 뭉치는 선형보간 방식의 문제점을 해결할 수 있다.
The Mobile Harbor(MH) is a new transportation platform that can load and unload containers to and from very large container ships in the sea. This loading and unloading by crane can be performed with only very small movements of the MH in waves because MH is operated outside of the harbor. For this reason, an anti-rolling tank(ART) and an active mass driving system(AMD) were designed to reduce MH's roll motion, especially at the natural frequency of MH. In the conceptual design stage, it is difficult to confirm the design result of theses anti-rolling devices without modeling and simulation tools. Therefore, the coupled MH and anti-rolling devices' dynamic equations in waves were derived and a simulation program that can analyze the roll reduction performance in various conditions, such as sea state, wave direction, and so on, was developed. The coupled equations are constructed as an eight degrees of freedom (DOF) motion that consists of MH's six DOF dynamics and the ART's and AMD's control variables. In order to conveniently include the ART's and AMD's control dynamics in the time domain, MH's radiated wave force was described by an impulse response function derived by the damping coefficient obtained in the frequency domain, and wave exciting forces such as Froude-Krylov force and diffraction force and nonlinear buoyancy were calculated at every simulation time interval. Finally, the roll reduction performances of the designed anti-rolling devices were successfully assessed in the various loading and wave conditions by using a developed simulation program.