MspTL is the major surface protein of Treponema lecithinolyticum associated with periodontitis and endodontic infections. Our recent investigation revealed that MspTL induces proinflammatory cytokines and intercellular adhesion molecule 1 in THP-1 cells and periodontal ligament cells. In this study we conducted oligonucleotide microarray analysis to investigate the global transcriptional regulation in THP-1 cells stimulated with purified recombinant MspTL. MspTL upregulated the expression of 90 genes in THP-1 cells at least four fold, and the functions of these genes were categorized into adhesion, apoptosis/antiapoptosis, cell cycle/growth/differentiation, chemotaxis, cytoskeleton organization, immune response, molecular metabolism, proteolysis, signaling, and transcription. The majority of the modified genes are known to be NF-κB-responsive and interferon-stimulated genes (ISGs). The expression of 12 selected genes was confirmed by real-time RT-PCR. Because prostaglandin E2 (PGE2) is an important inflammatory mediator and Cox-2 was found to be induced by MspTL in the microarray analysis, we determined the level of PGE2 in the culture supernatants of MspTL-treated cells and found that MspTL significantly increased PGE2. Our results provide insight into the gene regulation of host cells in response to MspTL, and may contribute to the understanding of the molecular mechanism in periodontitis.
This study aims to reveal how EA affects BAX and NF-kB involved in cell deaths from global ischemia, and to do this, observes the changes of BAX and NF-kB caused by EA application after transient global ischemia. The experimental method is to give rise to global ischemia and apply EA to 27 SD rats with the particulars of being six-week-old, male, around-300 gram-weighing, and adapted to laboratory environment for more than a week, and divide them into three groups, that is, GV20 EA group(n=9), L14 EA group(n=9), no-treatment GI group(n=9), and then observe their changes of BAX and NF-kB at the time lapse of 6 hours, 9 hours and 12 hours after ischemia, using western blotting. The numerical decrease of BAX expression at the time lapse of 9 hours after EA application, though not statistically significant, was observed in GV20 EA group and L14 EA group, and the NF-kB expression appeared statistically significant decrease in GV20 EA group and L14 EA group, but the expression was higher in the group with EA application. Therefore, EA application at the early phase of global ischemia is considered to affect BAX and NF-kB and play a positive role in decreasing apoptosis and cell deaths by inflammation.
In the present study, we have demonstrated that a novel synthetic chemical JSH-21 of N¹-Benzyl-4-methylbenzene-1,2-diamine could inhibit nitric oxide (NO) production in lipopolysaccharide (LPS)-activated macrophages RAW 264.7. The JSH-21 showed an IC50 value of 9.2 uM on the LPS-induced NO production. Furthermore, JSH-21 attenuated LPS-induced mRNA and protein levels of inducible NO synthase (iNOS) in the cells, as well as inhibited LPS-induced iNOS promoter activity. These results indicates hat the compound could down-regulate iNOS expression at the transcription level. Since NF-kB activation is a key mechanism in the expression of LPS-inducible iNOS gene, we further examined whether JSH-21 could affect LPS-induced NF-kB activation. JSH-21 inhibited LPS-induced nuclear import of NF-kB p65 in macrophages RAW 264.7 and sequentially prevented NF-kB transcriptional activity. However, JSH-21 was not effective in a LPS-induced degradation of cytoplasmic IkB-alpha in the cells. These results suggest that JSH-21 could inhibit LPS-induced NF-kB activation targeting nuclear import of NF-kB, an event downstream IkB degradation. Taken together, this study may provide a pharmacological potential of JSH-21 in the NO- or NF-kB-associated inflammatory disorders.
Today, environmental pollution has been found to be one of the causes of various diseases, including brain and nervous system diseases. In particular, neurodegenerative diseases have been found to be caused by hyperactivation of immune system cells such as microglia. Preventive and therapeutic measures are needed to suppress them. Hirudo is known as a traditional herbal medicine, based on its multiple biological activities such as anti-eczema and anti-coagulation. In the present study, the anti-neuroinflammatory potential of hirudo extract was investigated in lipopolysccharide (LPS)-stimulated BV2 microglial cells and in mice. Hirudo extract significantly inhibited LPS-stimulated nitric oxide (NO) production and cytokine (IL-1Ra, KC, MCP-5, and RANTES) expression in a dose-dependent manner without causing cytotoxicity. Pretreatment with hirudo extract suppressed LPS-induced NF-κB p65 nuclear translocation. Moreover, hirudo extract reduced LPS-stimulated microglial acitivation and improved memory impairments. The results demonstrated that hirudo extract exerts anti-neuroinflammation activities, partly through inhibition of the NF-κB signaling pathway. These findings suggest that hirudo extract might have therapeutic potential with respect to neuroinflammation and neurodegenerative diseases.
Background : Ginseng (Panax ginseng) has been reported to exert an anti-inflammatory activity in a variety of inflammatory. However, inflammation-regulatory activity of wood-cultivated ginseng has not been thoroughly evaluated. In this study, we evaluated the anti-inflammatory effect of wood-cultivated ginseng and elucidated the potential mechanisms in LPS-stimulated RAW264.7 cells.
Methods and Results : Inhibitory effects of the old wood-cultivated ginseng (WCG-O), young wood-cultivated ginseng (WCG-Y) and ginseng (G) on NO and PGE2 production were examined using the Griess assay and ELISA kit. Suppressive effects of WCG-O on inflammatory gene expression, transcriptional activation, and inflammation signaling events were investigated using Western blot analysis, RT-PCR analysis and luciferase activity reporter gene assay. WCG-O dose-dependently suppressed nitric oxide (NO) and Prostaglandin E2 (PGE2) production in LPS-stimulated RAW264.7 cells. In addition, WCG-O attenuated LPS-mediated overexpression of iNOS and COX-2. In addition, WCG-O blocked the expression of TNF-α and IL-1β in LPS-stimulated RAW264.7 cells. In elucidation of the potential mechanisms for anti-inflammatory effect, WCG-O inhibited the activation of IκK-α/β, the phosphorylation of IκB-α, and degradation of IκB-α, which results in the inhibition of p65 nuclear accumulation and NF-κB activation. In addition, WCG-O suppressed the activation of ERK1/2, p38 and JNK, which results in the inhibition of ATF2 nuclear accumulation.
Conclusion : These results indicate that WCG-O may exert anti-inflammatory activity through the inhibiting NF-κB and MAPK signaling. From these findings, WCG-O has potential to be a candidate for the development of chemoprevention or therapeutic agents for the inflammatory diseases.
Background : Mistletoe has been used as the herbal medicine to treat hypertension, diabetes mellitus, inflammation, arthritis and viral infection. In this study, we evaluated the anti-inflammatory effect of extracts of branch from Taxillus yadoriki being parasitic in Neolitsea sericea (TY-NS-B) using in vitro model.
Methods and Results : TY-NS-B significantly inhibited LPS-induced secretion of NO and PGE2 in RAW264.7 cells. TY-NS-B was also observed to inhibit LPS-mediated iNOS COX-2 expression. In addition, TY-NS-B attenuated production of inflammatory cytokines such as TNF-α and IL-1β induced by LPS. TY-NS-B blocked LPS-mediated inhibitor of IκB-α, and inhibited p65 translocation to the nucleus and NF-κB activation. Furthermore, TY-NS-B reduced the phosphorylation of MAPKs such as p38 and JNK, but not ERK1/2. In addition, TY-NS-B increased ATF3 expression and ATF3 knockdown by ATF3 siRNA attenuated TY-NS-B-mediated inhibition of pro-inflammatory mediator expression.
Conclusion : Collectively, our results suggest that TY-NS-B exerts potential anti-inflammatory effects by suppressing NF-κB and MAPK signaling activation, and increasing ATF3 expression. These findings indicate that TY-NS-B could be further developed as an anti-inflammatory drug.