본 연구는 전국 임의의 산양삼 재배지를 선정하여 재배 지 내의 토양 특성 및 토양세균군집을 분석하고, 토양이 화학적 특성, 토양세균군집 및 산양삼 생육특성 간의 상관 관계를 구명하기 위하여 수행되었다. 토양세균군집 분석은 pyrosequencing analysis (Illumina platform)를 이용하였고, 토양세균군집과 생육특성 간의 상관관계는 Spearman’s rank correlation을 이용하여 분석하였다. 8개 산양삼 재배 지로부터 분리한 토양세균군집은 2개의 군집으로 군집화를 이루는 것을 확인하였다. 모든 토양샘플에서 Proteobacteria와 Alphaproteobacteria가 각각 35.4%, 24.4%로 가장 높은 상대적 빈도수를 보였다. 산양삼의 생육은 토양 pH가 낮고 Acidobacteria의 상대적 빈도수가 높은 토양에서 증가 하였으며, Acidobacteriia (class)와 Koribacteraceae (family)의 상대적 빈도수는 산양삼의 생육과 유의적인 정의 상관관계를 보이는 것으로 나타났다. 본 연구 결과는 토양세균군 집과 산양삼 생육 간의 상관관계를 구명하는 중요한 자료가 될 것으로 생각되고, 나아가 산양삼 재배 이전에 산양삼의 생육에 유용한 토양세균군집을 확인할 수 있다면 산양삼 재배적지를 선정하는데 도움을 줄 수 있을 것이다. 또한 토양이화학성과 더불어 임상 및 주변식생에 따른 토양 세균군집과 산양삼 생육특성에 대한 상관관계 연구를 추 가로 수행한다면 보다 명확한 정보를 대한 제공할 수 있을 것으로 사료된다.
한약재는 저장 및 유통과정에서 약 20여종의 저장해충이 발생하는 것으로 알려져 있으나 화랑곡나방(Plodia interpunctella H.), 권연벌레(Lasioderma serricorne F.), 거짓쌀도둑거저리(Tribolium castaneum H.) 등 일부 우점해충이 이들 피해의 절반이상을 차지하고 있는 것으로 파악되고 있다. 그런데 시중유통 한약재 중에는 저장해충 외에 권련침벌 등 포식성 해충이 함께 발견되고 있으나 이에 대한 조사나 연구결과는 거의 없는 상황이다. 본 연구는 한약재 저장해충의 생태네트워크를 파악하기 위하여 기존의 문헌들을 바탕으로 이들 해충의 포식관계를 조사하고 시중유통 한약재 중 비교적 해충오염도가 높은 약재를 번식이 유리한 온습도 조건에서 보관하며 해충밀도를 높인 후 자연 증식한 숙주와 포식해충의 생태를 현미경으로 관찰하였다. 국내외 문헌조사결과 권연벌레의 천적은 권련침벌, 곤충병원성선충, 쌀바구미금좀벌, 긴털가루응애 등이 밝혀진바 있고, 화랑곡나방의 천적은 보리나방살이고치벌이 그리고 거짓쌀도둑거저리의 천적은 긴털가루응애(Tyrophagus putrescentiae S.)가 확인된바 있다. 실제로 오염 한약재인 천궁, 방풍 등을 보관하는 과정에서도 권연벌레의 밀도가 높아지자 권련침벌(Cephalonomia gallicola H.)이 크게 발생하였고, 긴털가루응애는 권연벌레와 거짓쌀도둑거저리 모두에게서 발견되었다. 그러나 권련침벌의 경우 한약재를 구입할 때부터 포장지 내에 권연벌레와 함께 있는 것이 확인되었으나 긴털가루응애는 처음부터 한약재 포장 속에 있었는지 한약재 보관실험과정에서 주변으로부터 오염되었는지는 확인되지 않았다. 긴털가루응애의 발생직후 확산속도는 습도가 높을 경우 권련침벌보다 훨씬 빨랐으며 습도를 30% 이하로 낮출 경우에는 밀도가 크게 떨어졌다. Sm. Ch. Papadopoulou(2006)는 권련침벌이 한집단내 권연벌레 유충을 평균 약 20%가량 포식하는 것으로 조사하였으나 본 관찰결과 이보다 훨씬 많이 발생하였으며 권연벌레의 밀도를 90%이상 감소시킨 경우도 있었다. 본 조사를 통해 관련 천적들이 주요 저장해충의 밀도를 어떤 조건에서 얼마나 낮출 수 있는지에 관한 계량적인 연구결과는 아직 부족하나 천적으로 활용하기에는 인체 위해성 및 다른 식품 등으로의 2차오염 가능성이 있어 다소 부적합 할 것으로 판단된다.
본 연구는 7년, 13년근 산양삼의 생육특성과 진세노사이드 (G) 함량 간의 상관관계를 구명하기 위하여 수행되었다. 6개소의 산양삼의 생육특성을 조사한 결과, 뇌두길이, 뿌리길이, 생중량, 단면적, 표면적, 부피에 있어 13년근 산양삼이 7년근 산양삼에 비하여 유의적으로 높은 것을 확인하였다. 진세노사이드 11종에 대한 함량은 G-Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg2 함량이 13년근 산양삼이 7년근 산양삼 보다 유의적으로 높은 수치를 확인하였다. 또한 산양삼과 인삼(재배삼) 진세노사이드 함량 을 비교한 결과, 13년 산양삼에서 G-Rb1, Rd, Re, Rf, Rg1이 4 년, 5년근 인삼(재배삼)에 비해 유의적으로 함량이 높은 것으로 확인되었다. 산양삼 연근별 생육특성과 진세노사이드 함량 간의 상관관계를 분석한 결과, G-Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg2 함량은 뇌두길이, 생중량, 단면적, 표면적, 부피와 유의정인 정의 상관관계를 보였으며, G-Rb1, Re, Rf, Rg2는 줄기직경 과 부의 상관관계를 확인하였다. 본 연구는 산양삼의 7년근과 13년근을 대상으로 생육특성과 진세노사이드 함량 상관관계를 구명함으로써 연근에 따른 품질규격 정립에 유용한 정보를 제공 할 것으로 판단된다.
본 연구는 고품질 산양삼 생산을 위한 표준재배기술 개발을 위해 산양삼의 생육특성과 재배지의 입지환경 간의 상관관계를 구명하고자 하였다. 전국 9지역의 산양삼 재배지를 선정하여 13년생 산양삼의 생육특성을 조사하고, 각 재배지의 임상 및 토양 이화학성을 분석하여 입지환경과 산양삼 생육특성과의 상관관계를 확인하였다. 총 9개의 재배지 중에서 산양삼의 생육특성은 거창과 함양 재배지에서 다른 재배지에 비해 유의적으로 높은 것으로 나타났다. 임산과의 상관관계를 확인한 결과, 산양삼의 부피는 재배지 임상의 흉고직경과 유의적인 정의 상관관계를 보였고, 활엽수의 비율과 유의적인 부의 상관관계, 침엽수의 비율과는 유의적인 정의 상관관계를 보였다. 침엽수의 비율이 100%로 확인된 영월 재배지의 산양삼 생육특성이 다른 재배지 에 비해 유의적으로 높지 않은 것으로 확인되어, 이러한 결과는 침활혼효림에서 침엽수의 비율과 상관관계가 있는 것으로 판단 된다. 토양 특성과의 상관관계 분석에서는 재배지 토양의 pH, K, Ca, Mg과 생육특성 간의 유의적인 부의 상관관계를 확인할 수 있었다. 이와 같이 산양삼의 생육특성과 입지환경 간의 상관 관계를 분석한 결과, 산양삼의 생육은 재배지 임상의 흉고직경 이 크고, 침활혼효림에서 침엽수의 비율이 높으며, 토양의 pH, K, Ca, Mg 함량이 높지 않은 재배지에서 적합하다는 것을 확인 할 수 있었다. 본 연구의 결과를 통해 산양삼 재배에 적합한 재배적지의 입지환경 조건을 확인할 수 있었고, 산양삼은 7~20년 동안 무농약, 무비료의 청정환경에서 생산하는 것이 원칙이기 때문에 본 연구의 결과를 활용하여 향후 산양삼의 예상재배지를 선정하는데 있어 도움을 줄 수 있을 것으로 사료된다.
The this study was carried out to investigate the growth characteristics of wild-simulated ginseng by direct seeding and transplanting cultivation for develop standard cultivation techniques of wild-simulated ginseng. Bonghwa experimental field were confirm to be suitable location environment for cultivation of wild-simulated ginseng. As a result of this study, the germination rate of wild-simulated ginseng was significantly highest when seed size was over 6.5 ㎜ in the spot seeding cultivation. In the case of transplanting, survival rate was significantly increased when the diameter of root was over 10 ㎜, planting distance was 7 ㎝, and the thickness of soil covering was less then 2 ㎝. The result of growth characteristics of wild-simulated ginseng by cultivation type, growth of stem in spot seeding cultivation was showed significantly increased when seed size over 6 ㎜, seeding number was 3 grains, and the seeding distance was less then 5 ㎝. Strip seeding cultivation was showed significantly increased in stem and root growth when seeding distance was 30 ㎝ grains and quantity of seeding was less then 23 g. In the case of transplanting cultivation, it’s was showed significantly increased in stem growth when diameter of root was over then 10 ㎜ and direction of rhizome was top and bottom. The results of this study was that to clearly establish the techniques of cultivation of managements and it’s will be suggest contribute to the industrial activation of wild-simulated ginseng.
Background : Wild-simulated ginseng (WSG, Panax ginseng C. A. Meyer) in Korea which depends on an artificial forest growth method.
Methods and Results : WSG samples were collected from 8 different regions in Korea in October, 2017, and these were analyzed by ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF MS) using optimized analytical methods to compare the metabolite patterns to cultivated regions. Furthermore, their metabolite compositions differed according to individual plant samples. The metabolite profiling data were processed by multi-variate statistical analyses such as PCA and PLS-DA to determine the differences among geographical origins. To identify significant metabolites according to regional variances of WSG, more sophisticated multi-variate statistical analyses such as metabolite selection should be performed.
Conclusion : This metabolomics approach can also be applied to evaluate the overall quality of WSG, as well as to discriminate the cultivars for the medicinal plant industry.
Background : Wild-simulated ginseng (WSG, panax ginseng C. A. Meyer) is known to be grown in high altitudes with a climate of cool, well ventilated and fertile humid forests. In this study, the effects of altitude and soil characteristics on the growth of WSG were investigated.
Methods and Results : The seeds were planted on designated line, and the altitude was set at 600 highland and 300 highland. At each highland soil characteristics and forest condition were investigated also Hobo (HOBO U30 Werther station) was set up to measure the microclimate in the site. Experiments were conducted in each highland to determine the difference in the growth of WSG according to the soil condition. Growth characteristics of undergrowth, such as root thickness and length also upper growth such as stem length and thickness were measured. As a result of the soil characteristics survey, the value of available phosphorus was found to be 256.7 ㎎/㎏ at 300 highlands. On the other hand, in 600 highland, available phosphorus was 29.59 ㎎/㎏, which showed big difference.
Conclusion : Overall, the cation exchange capacity was higher than the 600 highland at 300 highland. The weight, stem length, root length and leaflet size of the wild-simulated ginseng were higher than those of 600 highland at 300 highland.
Background : Ginseng (Panax ginseng) has been reported to exert an anti-inflammatory activity in a variety of inflammatory. However, inflammation-regulatory activity of wood-cultivated ginseng has not been thoroughly evaluated. In this study, we evaluated the anti-inflammatory effect of wood-cultivated ginseng and elucidated the potential mechanisms in LPS-stimulated RAW264.7 cells.
Methods and Results : Inhibitory effects of the old wood-cultivated ginseng (WCG-O), young wood-cultivated ginseng (WCG-Y) and ginseng (G) on NO and PGE2 production were examined using the Griess assay and ELISA kit. Suppressive effects of WCG-O on inflammatory gene expression, transcriptional activation, and inflammation signaling events were investigated using Western blot analysis, RT-PCR analysis and luciferase activity reporter gene assay. WCG-O dose-dependently suppressed nitric oxide (NO) and Prostaglandin E2 (PGE2) production in LPS-stimulated RAW264.7 cells. In addition, WCG-O attenuated LPS-mediated overexpression of iNOS and COX-2. In addition, WCG-O blocked the expression of TNF-α and IL-1β in LPS-stimulated RAW264.7 cells. In elucidation of the potential mechanisms for anti-inflammatory effect, WCG-O inhibited the activation of IκK-α/β, the phosphorylation of IκB-α, and degradation of IκB-α, which results in the inhibition of p65 nuclear accumulation and NF-κB activation. In addition, WCG-O suppressed the activation of ERK1/2, p38 and JNK, which results in the inhibition of ATF2 nuclear accumulation.
Conclusion : These results indicate that WCG-O may exert anti-inflammatory activity through the inhibiting NF-κB and MAPK signaling. From these findings, WCG-O has potential to be a candidate for the development of chemoprevention or therapeutic agents for the inflammatory diseases.
Background : The Codonopsis genus belongs to the Campanulaceae, and it is recorded that there are four species of Codonopsis genus in Korea, such as Codonopsis lanceolata, Codonopsis pilosula, Codonopsis minima, and Codonopsis ussuriensis. C. lanceolata has been proved to be safety and efficacy, and has been widely used for medicinal and edible purposes for a long time in East Asian countries including Korea, China and Japan. However, little genetic research has been done.
Methods and Results : Ten species of Codonopsis plants were collected and DNA was extracted using CTAB (cetyl trimethylammonium bromide) method. The extracted DNA was diluted to 5 ng/㎕ for the PCR (polymerase chain reaction) process. C. lanceolata genome was used to develop molecular markers by searching insertion and deletion regions (InDel) in the chloroplast sequence. The developed markers were applied to 4 individuals per Codonopsis species. PCR amplification was carried out using a denaturation at 94℃ for 30 sec, annealing at 58℃ for 30 sec and extension at 72℃ for 30 sec, repeated for 35 total cycles. The PCR products were separated in a 4% agarose gell at 100 V for 40 min.
Conclusion : Using the molecular markers developed in this study, genetic diversity of Codonopsis genus was tested, and at the same time, a specific molecular marker was developed to differentiate C. lanceolata from the Codonopsis plants.
In this study, we evaluated anti-inflammatory effect of biji in LPS-stimulated RAW264.7 cells. Biji inhibited the generation of NO and PGE2 through the suppression of iNOS and COX-2 expression. In addition, biji attenuated the expression of TNF-α and IL-1β induced by LPS. Biji blocked LPS-mediated IκB-α degradation and subsequently inhibited p65 nucleus accumulation in RAW264.7 cells, which indicates that biji inhibits NF-κB signaling. In addition, biji suppressed p38 phosphorylation induced by LPS. Our results suggests that biji may exert anti-inflammatory activity through blocking the generation of the inflammatory mediators such as NO, PGE2, iNOS, COX-2, TNF-α and IL-1β via the inhibiting the activation of NF-κB and p38. From these findings, biji has potential to be a candidate for the development of chemoprevention or therapeutic agents for inflammatory diseases.
Background: Panax ginseng C. A. Meyer is wood-cultivated ginseng (WCG) in Korea which depends on an artificial forest growth method. To produce this type of ginseng, various P. ginseng cultivars can be used. To obtain a WCG similar to wild ginseng (WG), this method is usually performed in a mountain using seeds or seedlings of cultivated ginseng (CG) and WG. Recently, the WCG industry is suffering a problem in that Panax notoginseng (Burk.) F. H. Chen or Panax quinquefolium L. are being sold as WCG Korean market; These morphological similarities have created confusion among customers. Methods and Results: WCG samples were collected from five areas in Korea. After polymerase chain reaction (PCR) amplification using the primer pair labeled with fluorescence dye (FAM, NED, PET, or VIC), fragment analysis were performed. PCR products were separated by capillary electrophoresis with an ABI 3730 DNA analyzer. From the results, WCG cultivated in Korea showed very diverse genetic background. Conclusions: In this study, we tried to develop a method to discriminate between WCG, P. notoginseng or P. quinquefolium using simple sequence repeat (SSR) markers. Furthermore, we analyzed the genetic diversity of WCG collected from five cultivation areas in Korea.
Background: In the herbal medicinal industry, Angelica gigas Nakai, Angelica sinensis (Oliv.) Diels. and Angelica acutiloba (Siebold & Zucc.) Kitag. are often confused, because the roots of the three species can not be distinguished by their appearance. This confusion can cause serious side effects. In this study, we determined the origins of Angelica roots distributed in the Korean market using the simple sequence repeat (SSR) markers developed based on the A. gigas chloroplast DNA sequence. Methods and Results: We collected twenty seven A. gigas and three A. acutiloba samples from the Seoul, Daegu, and Cheongju herbal medicinal markets. Fifty sections of one collection were mixed and ground to make a powder, which was used for DNA extraction using the cetyl trimethylammonium bromide (CTAB) method. Chloroplast based SSR markers were applied to the DNA for the determination of the species. In addition, polymorphism was found in eight samples. The phylogenetic analysis showed that the A. gigas roots collected from herbal medicinal markets were clearly discriminated from A. sinensis and A. acutiloba even though they were grouped into four clusters. Conclusions: This study showed that chloroplast based SSR markers would help the discrimination of Angelica roots in the Korean herbal medicinal industry and the markers are useful to prevent confusion between Angelica roots.
Background: In this study, we evaluated the anti-cancer activity and potential molecular mechanism of 70% ethanol extracts of the root of Aralia cordata var. continentalis (Kitagawa) Y. C. Chu (RAc-E70) against human colorectal cancer cells. Methods and Results: RAc-E70 suppressed the proliferation of the human colorectal cancer cell lines, HCT116 and SW480. Although RAc-E70 reduction cyclin D1 expression at the protein and mRNA levels, RAc-E70-induced reduction in cyclin D1 protein level occurred more dramatically than that of cyclin D1 mRNA. The RAc-E70-induced downregulation of cyclin D1 expression was attenuated in the presence of MG132. Additionally, RAc-E70 reduced HA-cyclin D1 levels in HCT116 cells transfected with HA-tagged wild type-cyclin D1 expression vector. RAc-E70-mediated cyclin D1 degradation was blocked in the presence of LiCl, a GSK3β inhibitorbut, but not PD98059, an ERK1/2 inhibitor and SB203580, a p38 inhibitor. Furthermore, RAc-E70 phosphorylated cyclin D1 at threonine-286 (T286), and LiCl-induced GSK3β inhibition reduced the RAc-E70-mediated phosphorylation of cyclin D1 at T286. Conclusions: Our results suggested that RAc-E70 may downregulate cyclin D1 expression as a potential anti-cancer target through GSK3β-dependent cyclin D1 degradation. Based on these findings, RAc-E70 maybe a potential candidate for the development of chemopreventive or therapeutic agents for human colorectal cancer.
Background : The young stem of Cinnamomum cassia (YSC) as traditional Chinese medicines has been reported to show a variety of pharmacological properties such as anti-allergy, insecticidal, antimicrobial, antiulcer, anti-inflammatory, immune-suppressive, and neuronal death prevention, tyrosinase inhibition and anticancer, antioxidant and free radical scavenging, as well as antidiabetic and aldose reductase inhibition activities. In this study, we elucidated apoptotic effect and potential molecular mechanism of hot water extracts from YSC (YSC-HW) against human colorectal cancer cells. Methods and Results : YSC-HW treatment increased ROS level and induced ROS-dependent DNA damage in human colorectal cancer cells. ROS generation mediated by YSC-HW induced DNA induced apoptosis and reduction of cell viability in human colorectal cancer cells. YSC-HW ROS-dependently induced NF-kB activation through p65 nuclear translocation via IkB-α degradation, which exerted the induction of apoptosis. In addition, YSC-HW activated ATF3 expression dependent on ROS, which resulted in apoptosis. Conclusion : Our results suggest that YSC-HW may induce apoptosis through ROS-activation of NF-kB and ATF3 in human colorectal cancer cells. From these findings, YSC-HW has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.
Background : Panax ginseng C.A. Meyer is a perennial herb belongs to the family Araliaceae. Wild-cultivated ginseng (WCG) is a specific type of ginseng in Korea which cultivated on artificial forest cultivation method. To obtain a WCG which is similar to wild ginseng (WG), this method usually performed in a mountain using seeds or seedlings of cultivated ginseng (CG) and WG. WCG is very expensive because it is difficult to cultivate. However, systematic cultivation method have not yet been developed compared to high added value. Furthermore, very high price of WCG caused the problem that Panax notoginseng or Panax quinquefolium are sold as WCG in Korean market. In this study, we analyzed the genetic diversity of WCG collected from five areas in Korea using SSR markers. Methods and Results : WCG samples were collected from five areas in Korea (Bucheon, Cheongju, Hoengseong, Judeok and Ulsan). DNA extraction was performed using CTAB method. SSR markers were collected from the published papers. After test PCR using the markers, one of the primer pair was labeled with fluorescence dye (FAM, NED, PET, or VIC) and GeneScan analysis were performed. DNA amplification was conducted using T-100 Thermal Cycler (Bio-Rad). PCR products were separated by capillary electrophoresis on the ABI 3730 DNA analyzer (Applied Biosystems). Conclusion : Eight SSR markers were collected from the published literature and used for the analysis. From the 8 tested SSR markers, 7 SSR markers showed polymorphism between varieties. GenScan analysis were performed using the selected SSR markers to analyze the phylogenetic relationship of WCG. From the results, WCG cultivated in Korea showed that they have a very diverse genetic background.
Background : Codonopsis lanceolata is a perennial plant of Campanulaceae and mainly distributed in East Asia such as Korea, China, and Japan. C. lanceolata has a unique taste and aroma, and it is rich in minerals such as phosphorus and calcium, and vitamin B1 and B2, so our ancestors used the plant as medicinal herb and edible vegetable. However, systematic cultivation and development of varieties have not been achieved compared to demand or high added value. The genetic diversity and relationship analysis of the plants help to increase the efficiency of breeding through genetic variation. Methods and Results : Ten species of Codonopsis plants were used as materials and DNA was extracted from each 4 individuals per species and quantified at a concentration of 10 ng /㎕. The extracted DNA was pooled by species and PCR was performed using the EST-SSR marker developed based on C. lanceolata in the previous study. PCR amplification was carried out using a denaturation at 94℃ for 30 sec, annealing at 58℃ for 30 sec and extension at 72℃ for 30 sec, repeated for 35 total cycles. The PCR products were separated in a 4% agarose gell at 100 V for 40 min. Conclusion : In this study, C. lanceolata collections was determined among several Codonopsis species using these molecular marker. It is expected that the data of this study can be used as reference for genetic polymorphism analysis and related gene studies of Codonopsis species.