본 연구는 7년, 13년근 산양삼의 생육특성과 진세노사이드 (G) 함량 간의 상관관계를 구명하기 위하여 수행되었다. 6개소의 산양삼의 생육특성을 조사한 결과, 뇌두길이, 뿌리길이, 생중량, 단면적, 표면적, 부피에 있어 13년근 산양삼이 7년근 산양삼에 비하여 유의적으로 높은 것을 확인하였다. 진세노사이드 11종에 대한 함량은 G-Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg2 함량이 13년근 산양삼이 7년근 산양삼 보다 유의적으로 높은 수치를 확인하였다. 또한 산양삼과 인삼(재배삼) 진세노사이드 함량 을 비교한 결과, 13년 산양삼에서 G-Rb1, Rd, Re, Rf, Rg1이 4 년, 5년근 인삼(재배삼)에 비해 유의적으로 함량이 높은 것으로 확인되었다. 산양삼 연근별 생육특성과 진세노사이드 함량 간의 상관관계를 분석한 결과, G-Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg2 함량은 뇌두길이, 생중량, 단면적, 표면적, 부피와 유의정인 정의 상관관계를 보였으며, G-Rb1, Re, Rf, Rg2는 줄기직경 과 부의 상관관계를 확인하였다. 본 연구는 산양삼의 7년근과 13년근을 대상으로 생육특성과 진세노사이드 함량 상관관계를 구명함으로써 연근에 따른 품질규격 정립에 유용한 정보를 제공 할 것으로 판단된다.
참당귀(Angelica gigas Nakai)는 미나리과(Apiaceae) 당귀 속(Angelica L.)에 속하는 다년생 식물로, 뿌리에 효능이 많아 약용 목적으로 재배된다. 본 연구에서는 주로 생산되는 참당귀 재배지의 특성에 대한 연구와 이에 따른 참당귀의 생장 및 지표 성분 함량과의 상관관계를 구명하여 참당귀의 안정적인 한약재 수급을 위한 생산량 및 유용성분 함량 증가에 적합한 재배 환경에 대한 정보를 제공하는데 있다. 참당귀의 근직경은 평창 두일리가, 지근 개수는 평창 탑동리가 가장 많았다. 생중량은 평창 탑동리가 가장 높았으며, 건중량도 이와 같은 경향을 보였다. 재배지의 토성은 사질식양토(Sandy Clay Loam)였으며, 유기물 함량은 탑동리에서 3.63%로 가장 높은 함량을 보였다. 전 질소 함량은 봉화 남회룡리에서 0.19%로 가장 높았으며, 유효인 산 함량은 고선리에서 높았다. 총 decursin 함량은 두일리에서 5.31%로 가장 높았다. 결과적으로 평창 두일리에서 참당귀의 생육이 가장 우수하였으며, decursin 함량 또한 높았다. 당귀의 수량이나 성분은 재배지역의 환경조건에 크게 영향을 받는데, 해발이 높은 지역에서 재배하는 것이 지표성분 함량과 생산량 증가에 유리하다고 사료되며, 환경조건과 생육 및 지표성분 함량과의 상관관계에 대한 기초자료가 될 것이라고 판단된다. 또한, 최적의 재배환경의 확립과 식물의 생리작용에 대한 연구의 기초가 될 수 있을 것이라고 판단된다.
Background: Cnidium officinale Makino and Ligusticum chuanxiong Hort. are important medicinal crops in Korea. However, there is insufficient information on the identification of thrips, which attack these plants. Until now, one species of thrips has been recorded as a main pest.
Methods and Results: To identify the thrips emerging in C. officinale Makino and L. chuanxiong Hort., these plants were independently cultivated in two local areas. Thirty individuals of each plant species were selected randomly and surveyed for the presence of thrips. After confirming the existence of thrips, 100 thrips individuals were collected from each crop using the beating method. To identify thrips species, we performed PCR-restriction fragment length polymorphism (RFLP)-based analysis using ITS2 primer sets. Six thrips species were identified: western flower thrips (Frankliniella occidentalis), flower thrips (F. intonsa), onion thrips (Thrips tabaci), chrysanthemum thrips (T. nigropilosus), chilli thrips (Scirtothrips dorsalis), and grass thrips (Anaphothrips obscurus). The proportion of these species differed between the host plant species.
Conclusions: Six thrips species were major pests of two medicinal crops. Integrated pest management is required to control these thrips species, and will enhance the yield and quality of C. officinale and L. chuanxiong.
점봉산 참당귀는 해발 750-965 m의 교목층은 들메나무, 고로쇠나무, 신갈나무가 분포하고, 아교목층에는 당단풍, 까치박달나무가 분포하는 계곡지로 유기물이 집적되기 쉬운 다습한 지형에 자생하였다. 참당귀 군락의 토양 분석 결과 토양pH는 4.9-6.0으로 우리나라 산림토양의 평균과 매우 유사한 값을 보였으며, 토양 양분의 지표인 유기물함량, 전질소 양이온치환용량, 치환성 Ca, K, Mg, Na의 함량은 산림토양의 평균보다 비교적 높은 값을 보였다. 생장 특성으로는 9월 말에는 뿌리 생장이 평균 47.9 g이나 10월 말에는 33.8 g으로 29% 감소하였으며, 유용 성분은 반대로 10월말에 decursin 3.8%, decursinol angelate 3.6%로 각각 26%, 67% 증가하였다. 참당귀 자생지 8개 집단의 생장 특성 및 유용성분 함량과 토양특성 간의 상관분석을 수행한 결과 뿌리 생장은 치환성 양이온인 K, Mg, Na과 높은 양의 상관관계를 보였고, 유용성분은 뿌리의 수분함량과 높은 음의 상관관계를 보였다.
Background: Ginseng produced by hydroponics can be cultivated without using agricultural chemicals; thus, it can be used as a raw materials for functional foods, medicines, and cosmetics. This study aimed to determine the optimal harvesting time to obtain the highest levels of ginsenoside and ginseng, as this was not previously unknown.
Methods and Results: One-year-old organic ginseng seedlings were transplanted and cultivated using hydroponics for 150 days in a venlo-type greenhouse, using ginseng nursery bed soil and a nutrient solution (NO3 −-N; 6.165, P; 3.525, K; 5.625, Ca; 4.365, Mg; 5.085, S; 5.31 mEq/ℓ). Ginsenoside content and fresh and dry weights were higher at 120 days after transplanting than at 30, 60, 90, and 150 days. Total ginsenoside content was 11.86 times higher in the leaf and stem than in the root at 120 days after transplanting. Ginsenosides F1, F2, F3, and F5 were detected in ginseng leaves and stems. These chemical compounds are known to be effective in altering skin properties, including whitening, anti-inflammation, and anti-aging.
Conclusions: Optimal harvesting time for ginseng cultivated using hydroponics was 120 days after transplanting when the biomass and ginsenoside content were highest.
Background : A major medicinal plant, Angelica gigas Nakai, have using root parts and mainly cultivated the cool temperature region of high alpine as wild type in the northeast of China, Japan and Korea. The roots of grow it’s rapidly form August, and harvested from October to November. This study performed that the growth characteristics on soil mulching vegetation cultivation field of 300 m altitude of under Larix leptolepis (S. et Z.) Gordon in Bonghwa-gun, Gyeongsangbuk-do.
Methods and Results : After one-year seeding of the same size (7 - 8 ㎜) were transplanted in three types soil mulching of cultivation (plastic, straw and non-mulching) overground growth surveyed in three times (May to August), To confirm of soil condition compared the average. Soil condition of plot were observed to pH 5.56, OM 3.22%, T-N 017%, and growth increment were higher observed to that straw and non-mulching then plastic mulching of such as plant length 46.8 ㎝, stem diameter 5.9 ㎜, leaf length 24.4 ㎝ and width 28.9 ㎝, number of radical leaf 3.1. But from August, when the average temperature was high, the growth characteristics such as plant length, petiole Length, leaf length and width were reversed compared to those of plastic and non-mulching.
Conclusion : In case of cultivation of A. gigas in the environmental conditions of mountainous area, considering the growth from August to October when the roots growth bigger, It suggested that strew mulching is better than plastic and non-mulching, would be done through further research on underground growth characteristics of A. gigas according to harvesting time confirmed the relationship to the growth characteristics of A. gigas according to environmental conditions and soil mulching mountainous plantations.
Background: The cultivation of ginseng (Panax ginseng C. A. Meyer) in greenhouses could reduce the use of pesticides and result in higher yield; however, construction costs are problematic. The adaptation of direct-sowing culture in greenhouses could reduce the cost of ginseng production. Methods and Results: To improve seedling establishment in direct-sowing culture, effects of sowing density (SD), number of seeds sown per hole (SN), and thinning (TH) treatment on the root yield were investigated after 3 years of seeding. The emergence rate was significantly influenced by SD, but not by SN or TH. Damping-off and rusty roots increased with an increase in SN with diminishing effects of SN on seedling establishment. Root weight and diameter were affected by SD, SN, and TH, however, there were no statistical significances. The total number of roots harvested per unit area increased with increasing SD and SN, and the weight of roots was affected by SD, but not by SN or TH. Conclusions: Multi-seed sowing per hole and/or thinning might not be an efficient method for the direct-sowing culture of ginseng. The SD for direct seeding culture in greenhouses should be approximately 33 - 42 seeds/㎡ for an optimum yield of 3-year-old ginseng.
Background: The production method of ginseng seedlings for ginseng cultivation is very important to ensure healthy rooting system as well as high quality, and yield of the resultant plants. This study was carried out to compare the growth characteristics of 2- year-old ginseng plants that were produced from seedlings grown in self soil nursery (SSN), nursery soil (NS) or hydroponic culture (HC). Methods and Results: The shading prop used was composed of four-layered 4 polyethylene (blue 3 + black 1) shade screen. The management of main field was done by inserting oil cake (1,200 ㎏/10 a) and then allowing Sudan grass to grow for a year. Seedling transplantation was carried out on April 6. Root growth was measured on October 25. Root weight was observed to be excellent at 6.0 g, following SSN transplantation. Root length was 21.2 ㎝ for HC seedlings, but these plants had a physiological disorder (i.e., rusty root), in 83.5% plants of this treatment. The ratio of PD/PT (protopanaxadiol saponins / protopanaxatriol saponins) was higher in NS seedlings. Plant analysis revealed that Fe content was lower in HC seedlings with high rustiness. The growth of 2-years-old ginseng was different following these varying seedling cultivation methods, but seedlings from NS were not different from those grown in SSN. Conclusions: For the propagation of 2-year-old ginseng plants, NS seedlings may be a good substitute for SSN seedlings.
Background: Dehisced ginseng seeds need to be stored at cold temperatures for around 3 months to break their physiological dormancy, and thus, to aid in gemination. In the presence of high moisture in such an environment, seed spoilage and pre-germination may lower seed quality and productivity. To improve seed quality during cold-stratification, the effects of seed dehydration and temperature were tested. Methods and Results: In early December, dehisced ginseng seeds were dehydrated at 4 different levels and stored at 2℃- 2℃, and –20℃ for 3 months. Germination was carried out on the filter papers moistened with distilled water; emergence of root, shoot, and seed spoilage were assessed. Seed viability was examined by the tetrazolium test. More than 90% of the seeds stored at 2℃ and –2 ℃ without drying or endocarp dehydration germinated, but seeds that were dehydrated to have a moisture content (MC) below 31% showed poor germination and lost their viability. In addition, the seeds stored at –20℃ failed to show effective germination. Conclusions: Seed storage after endocarp dehydration might help to improve seed quality and increase seedling's ability to stand during the spring-sowing of ginseng.
Background: Ginseng is a perennial crop grown for more than four years in the same place. Therefore, it is highly affected by the soil environment, especially nutrients in the soil. The present study was carried out to investigate to the influence of boron and iron concentrations on the physiological status, growth, and mineral uptake of ginseng to obtain the basic information for diagnosing a physiological disorder in ginseng plants. Methods and Results: The boron and iron concentrations were controlled at 3, 30, 150, 300 and 2, 20, 100, 200㎎/ℓ, respectively. When treated with 150㎎/ℓ of boron, the ginseng plants showed yellowing or necrosis symptoms at the edge or end of their leaves. Compared with the 3㎎/ℓ treatment, the root weight decreased by 13 and 24% in the 150 and 300㎎/ℓ treatments, respectively. When treated with 20㎎/ℓ of iron, the ginseng plants showed yellowing between the veins of the leaves followed by the formation of brown spots. The root weight gradually decreased with increasing iron concentration. Approximately 55% decrease in root weight was observed upon treatment with 200㎎/ℓ of iron. Conclusions: The boron toxicity occurs in the leaves of ginseng at the boron concentration of approximately 1,900㎎/㎏ or more. The iron toxicity occurs at the iron concentration of approximately 120㎎/㎏ for leaves and 270㎎/㎏ for roots.
Background : Recently, some ginseng has been greenhouse production within the purse of fresh vegetables. The chemical of bed soil is very important because this leads to the stabilization of production in ginseng cultivation. The objective was to investigate the effects of composition of bed soil type on the growth. Methods and Results : Bed soil was commercial bed soil to the control and compared bed soil in 5 types. Culture nutrient solution was modified from Korea Wonshi nutrient solutions. Nutrient solution supply system has been applied to sub-irrigation system. Light intensity and photoperiod were 100 μmol⋅m-2⋅s-1 and 16 h, respectively; and air temperature was maintained at 25 ± 5℃. Nutrient solution was supplied after transplantation 20 days. Soil sampling was investigated every 30 days, and shoot growth were investigated from 60 to 150 days. Bed soil analysis result, the content of NO3 and P2O5 were significantly changed after 60 days in all types soil. The quantity of NO3 and P2O5 decreased with increase growth period. Also, Growth of roots showed a large influence of the soil pH. Conclusion : Results for ginseng hydroponic culture will enable the production of stable soil environment and efficient ginseng fresh vegetables.
Background : Green house hydroponic ginseng in the production cycle is shorter than the open field cultivation growers and attention. In particular, this part of the Aerial is a study on the active ingredients and contents. Ginseng has been focused on the past producing soil cultivation, producing hydroponic ginseng aerial part is known to have a high content of ginsenosides, and the active ingredient. Irrigation method, the culture soil and nutrient management are the impacts associated with the product's performance on ginseng growth. Ginseng growth stage is divided into five stages: emergence, foliation, root elongation, root enlargement and defoliation. because ginseng requires a water adjustment for each growth stage. It has been trying to control bottom surface irrigation and nutrient concentrations. Methods and Results : Ginseng seedling has been used for experiments to screen a healthy seedling of around 0.8g. Each of the seedling transplanted box was water supplied to the timer and the individual nozzle was 4ℓ amount per hour. All growth measures and sampling was carried out four times a seedling transplantation from 30 to 120 days. Soil sampling each time was a chemical analysis. In addition, the plant was used to analyze the ginsenosides. Conclusion : 12 of total ginsenosides ingredients were highest in the aerial part is 90 days, total ginsenosides of the 10 components in the root part was the highest in 30 days. The results were different this ginsenosides content from time to time, there were differences with previous reports. Results are shown to be due to the difference in the cultivation method and environment.
Background : An important feature of the nutrient solution is that they affect not only the growth but also quality of crops by changing nutrient uptake, especially due to changes of EC in nutrient solution. This study was carried out to investigate effect of EC in nutrient solution on growth and ginsenoside of ginseng. Methods and Results : EC in nutrient solution was controlled with 0.68, 0.84, 1.23, 1.41 dS/m. The root weight of ginseng treated by low EC levels in nutrient solution was higher during the initial of growth. However, the higher EC levels, the more increased the change rate of root weight from the initial to the middle of growth. The highest amount of ginsenoside was changed by growth period. Although the total amount of ginsenoside in root is highest treated by EC 0.68 dS/m at 45 days after treatment. the total amount of ginsenoside in root is highest treated by EC 1.23 dS/m at 135 days after treatment. Conclusions : EC in nutrient solution should to be controlled depending on the stage of growth and the part of use, i.e. root and leaves, when ginseng is cultivated through nutri-culture.
Background : Boron (B) is an essential element required for the growth of plant. It has a narrow range of optimal concentration from minimum to maximum thresholds than other micro-elements. The study was carried out to investigate to the influence of B excess concentrations on physiological disorder of leaf, growth and mineral concentration of ginseng to obtain basic information for physiological disorder diagnose. Methods and Results : The ginseng cultivar ‘Gumpoong’ was cultivated by hydroponic system for 2 months. The toxicity symptoms which ginseng leaves were curved downwardly and induced to chlorosis after beginning to dry the edge appeared on leaves more than 30 ppm compared to the control(3 ppm). The growth of ginseng was more decreased with higher B concentration. Mn uptake was also decreased as B concentration increased. It was found that B excess hindered the growth of ginseng and was reversely related to Mn uptake. Conclusions : More than B 30 ppm can negatively affect growth and mineral uptake. Consequently, B excess can occur physiological disorder of ginseng.
This study was performed to investigate the effects of enhanced light transmission on plant growth, photosynthetic ability, and disease tolerance to leaf blight, anthracnose in ginseng (Panax ginseng C. A. Meyer, Araliacease family) during the early growth stage (April to June). The photosynthetic ratio, stomatal conductance, and stem diameter of plants grown under a shade net with 15% light transmission rate showed an increasing trend compared to the control plants (5% light transmission rate) although the growth of the aerial parts were not influenced significantly. Plant height, stem length, and leaf length of treated plants were not significantly different from those of the control plants. Root parameters, such as root length, diameter, and weight of treated plants increased significantly compared to the control. Yield performance (187.4 ㎏• 10 a−1) of treated plants was 55.5% higher than that of the control (150.4 ㎏• 10 a−1). Additionally, disease severity scores of treated plants were lower than those of the control plants, revealing higher survival rates. To retain high yield potential and enhance the level of disease tolerance in ginseng, we suggest the increase of light transmission rate during the early growth stage.
This study was conducted to investigate the effects of sowing density, number of seeds sown per hole, andthinning treatment on growth characteristics and disease occurrence in Panax ginseng under direct sowing cultivation in ablue plastic greenhouse. Seedling were grown from 2 or 3 seeds sown, and the healthiest was only retained, while the restwere thinned out at the foliation stage. NO3-N, P2O5, and organic matter content differed significantly between growthconditions in the plastic greenhouse and in conventional shade in the soil. Disease also tended to be higher in the conven-tional shade than in the plastic greenhouse. Plant height and stem length showed an increasing trend with increasing sowingdensity and number of seeds sown per hole. However, these measures noticeably decreased when thinning treatment wasconducted. Growth of the subterranean part of ginseng was not markedly influenced by sowing density, the number of seedssown per hole, or thinning treatment. Root weight, which is an important factor in yield, was significantly affected by thenumber of seeds sown and thinning treatment. Interestingly, root weight tended to be higher in the thinning treatment plotthan the untreated control plot. Damping-off and root rot increased noticeably as the number of seeds sown increased. Dis-ease also tended to be substantially higher in the thinning treatment plot than the untreated control. However, physiologicaldisorder of the plants did not vary with sowing density, the number of seeds sown, or thinning treatment.