Background: Panax ginseng C. A. Meyer is wood-cultivated ginseng (WCG) in Korea which depends on an artificial forest growth method. To produce this type of ginseng, various P. ginseng cultivars can be used. To obtain a WCG similar to wild ginseng (WG), this method is usually performed in a mountain using seeds or seedlings of cultivated ginseng (CG) and WG. Recently, the WCG industry is suffering a problem in that Panax notoginseng (Burk.) F. H. Chen or Panax quinquefolium L. are being sold as WCG Korean market; These morphological similarities have created confusion among customers. Methods and Results: WCG samples were collected from five areas in Korea. After polymerase chain reaction (PCR) amplification using the primer pair labeled with fluorescence dye (FAM, NED, PET, or VIC), fragment analysis were performed. PCR products were separated by capillary electrophoresis with an ABI 3730 DNA analyzer. From the results, WCG cultivated in Korea showed very diverse genetic background. Conclusions: In this study, we tried to develop a method to discriminate between WCG, P. notoginseng or P. quinquefolium using simple sequence repeat (SSR) markers. Furthermore, we analyzed the genetic diversity of WCG collected from five cultivation areas in Korea.
Background : Panax ginseng C.A. Meyer is a perennial herb belongs to the family Araliaceae. Wild-cultivated ginseng (WCG) is a specific type of ginseng in Korea which cultivated on artificial forest cultivation method. To obtain a WCG which is similar to wild ginseng (WG), this method usually performed in a mountain using seeds or seedlings of cultivated ginseng (CG) and WG. WCG is very expensive because it is difficult to cultivate. However, systematic cultivation method have not yet been developed compared to high added value. Furthermore, very high price of WCG caused the problem that Panax notoginseng or Panax quinquefolium are sold as WCG in Korean market. In this study, we analyzed the genetic diversity of WCG collected from five areas in Korea using SSR markers. Methods and Results : WCG samples were collected from five areas in Korea (Bucheon, Cheongju, Hoengseong, Judeok and Ulsan). DNA extraction was performed using CTAB method. SSR markers were collected from the published papers. After test PCR using the markers, one of the primer pair was labeled with fluorescence dye (FAM, NED, PET, or VIC) and GeneScan analysis were performed. DNA amplification was conducted using T-100 Thermal Cycler (Bio-Rad). PCR products were separated by capillary electrophoresis on the ABI 3730 DNA analyzer (Applied Biosystems). Conclusion : Eight SSR markers were collected from the published literature and used for the analysis. From the 8 tested SSR markers, 7 SSR markers showed polymorphism between varieties. GenScan analysis were performed using the selected SSR markers to analyze the phylogenetic relationship of WCG. From the results, WCG cultivated in Korea showed that they have a very diverse genetic background.
Background : Wild-cultivated ginseng (WCG) prices are very different according to root ages. Generally, two methods are used to discriminate the root ages of Panax ginseng C.A. Meyer. The first method is the yearly determination method by the ring dyeing method, and the second method is the confirmation the number of stem vestiges in the rhizome. In this study, we analyzed the agronomic and growth characteristics of the WCG cultivated in Korea. In this study, to determine the appropriate root ages discrimination method for the determination of the root ages of WCG, the root ages of WCG and cultivated ginseng was examined. Methods and Results : We examined the cultivated ginseng (CG) and WCG that was collected and sold by regional groups at the Korean market. WCG does not form annual rings, which are clear and regular in wild ginseng. Therefore, it is impossible to identify the age of WCG by using the annual growth rings staining method. However, the age can be estimated by determining the number of stem vestiges in the rhizome. Conclusion : From the results of the Study on identification of root age for quality evealuation in WCG in Korea. Appropriate root ages discrimination method of WCG was confirmation the number of stem vestiges in the rhizome.
Background : Panax ginseng C.A. Meyer is a representative medicinal plants and it has been used in traditional medicine because the plant have many effective component such as saponins. To obtain a wild-cultivated ginseng (WCG) which is similar to wild ginseng (WG), this method usually performed in a mountain using seeds or seedlings of cultivated ginseng (CG) and WG. WCG is very expensive because it is difficult to cultivate. However, systematic cultivation method have not been developed compared to their high added value. Furthermore, very high price of WCG caused the problem that Panax notoginseng or Panax quinquefolium are sold as WCG in Korean market. This is concerned as a serious problem to consumers. In this study, we analyzed the agronomic and growth characteristics of the WCG cultivated in Korea. Methods and Results : We examined the WCG that was collected and sold by regional groups at the Korean market. The root age, growth conditions, and quality level of the cultivated WCG were confirmed. WCG samples were collected from five areas in Korea (Bucheon, Cheongju, Hoengseong, Judeok and Ulsan). The main root diameter, root shape index, rhizome length, and root weight showed high level of variation and they did not form annual rings. Conclusion : Agronomic and growth characteristics of WCG showed high variations according to cultivating regions.
Background : Wild-cultivated P. ginseng (WCG) is a specific ginseng in Korea which depends on artificial forest growth method. To obtain a WCG which is similar to wild ginseng (WG), this method usually performed in a mountain using seeds or seedlings of cultivated ginseng (CG) and WG. Recently, very high price of WCG caused the problem that Panax notoginseng or Panax quinquefolium are sold as WCG in Korean market. This is concerned as a serious problem to consumers. In this study, we tried to develop a method to discriminate WCG, CG or WG using simple sequence repeat (SSR) markers and phylogenetic analysis. Methods and Results : WCG samples (3, 5, or 6-years old) were collected in Hoengseong, Gangwondo. DNA extraction was performed using CTAB method. SSR markers were collected from the published papers. After test PCR using the markers, one of the primer pair was labeled with fluorescence dye (FAM, NED, PET, or VIC) and Gene Scan analysis were performed. NTsys-PC program was used for the phylogenetic analysis of the data. Eight SSR markers were collected from the published literature and used for the analysis. From the 8 tested SSR markers, 7 SSR markers showed polymorphism between varieties. GenScan analysis were performed using the selected SSR markers to analyze the phylogenetic relationship of WCG. Conclusion : Phylogenetic analysis showed the relationship between WCG and P. ginseng cultivars and the seven SSR markers used in this study are able to distinguish Wild-cultivated P. ginseng.
본 연구는 인삼점무늬병과 탄저병에 대한 친환경자재로 만들어진 친환경 살균제의 억제효과를 알아보기 위해서 수행을 했다. 인삼 점무늬병과 인삼 탄저병들은 인삼뿌리가 비대하기 시작하기 전에 낙엽을 시켜서 수확량을 크게 감소하는 주요한 병들이다. 천연칼슘, 녹차추출물, 홍삼박 술등은 A. panax에 의해서 유발된 인삼 점무늬병에 대해서 상당한 억제효과를 보였고 게 껍질 발효액과 익모초자연즙액은 C. gloeosporioides에 의해서 유발된 인삼탄저병에 대해서 큰 억제효과를 나타내었다. 이들 친환경 살균제는 치료효능보다 대체적으로 예방효능이 더 우수 하였다. 그러므로 이들 친환경 자재들은 인삼 유기재배포장에서 사용할 수 없는 화학농약을 대체하는 살균제로써 이용할 수 있고 그들의 억제효과를 극대화하기 위해 발병 전에 처리를 해야 한다.
Endophytes are microorganisms that live in the internal tissues of plants without harming the host plants. In this symbiotic relationship, the host plants provide nutrients and shelter to the endophytes, in turn, endophytes can promote the growth of host plants and act as a biological control agents against plant pathogens. Plant-microbe interactions like this are noted for natural methods for sustainable agriculture and environmental conservation. However, in spite of the infinite potential, there are only a few reports on the endophytes present in ginseng. In this study, we isolated and identified the endophytes from Panax ginseng seeds and evaluated the biological activities (IAA production ability, nitrogen fixation ability, phosphate solubilization capacity, siderophore production ability, and antifungal activities) of the endophyte isolates. Eight different endophytes were identified by 16S rRNA sequencing. Most of the endophytes have antibiotic and plant growth promoting (PGP) activities. Particularly, PgSEB5-37E have the highest antibiotic activity, both PgSEB5-37B and PgSEB5-37H have high PGP traits such as an abilities to produce IAA, solubilize phosphate and fix nitrogen. These results indicated that the endophytes from P. ginseng seeds may have applicable value to many industries. In order to use the isolated endophytes, quantitative analysis and field tests are needed to be performed.