Background: Purple potato contain sufficient phenolic compound and flavonoid which has high antioxidant capacity. Due to poor water solubility of phenolic compounds and quick oxidation of anthocyanin, we could not get maximum health benefits from purple potato. Therefore, we developed surfactant based aqueous nano suspension to enhance the solubility of phenolic compounds and protect the oxidation of anthocyanin from purple potato. Methods and Results: Two types of surfactant were used in this experiment based on hydrophilic-lycophilic balance viz. Brij and Span. In our study, lycophilic surfactant showed highest efficiency in TP extraction compared to water and lipophilic surfactant below 10 mM concentration. On the other hand, lipophilic surfactant showed highest efficiency in extracting flavonoid content. Conclusion: It is concluded that hydrophilic surfactant was significantly increased phenolic compounds five times, and lipophilic surfactant increased flavonoid two times, and anthocyanin three times compared to control. Therefore, total antioxidant capacity was increases two times compared to control.
본 연구는 레시틴으로 나노입자화 시킨 티아민 디라우릴 설페이트의 향장활성 증진에 관한 것이다. TDS를 포집시킨 나노입자는 150 ~ 200 nm의 크기를 나타내는 구형이며, 또한 제타포텐셜을 측정하여 여러 pH범위에서 안정한 것을 확인하였다. TDS 나노입자는 인간 섬유아세포(CCD-986sk)에 높은 농도를 처리하여도85%의 세포생존률을 보였다. 자유라디칼소거활성 실험을 진행한 결과 나노입자화하지 않은 TDS 희석액(1.0mg/mL)은 81.6%의 활성을 나타내었고, 나노입자화한 TDS 용액은 이보다 더 높은 88.1%의 높은 라디칼 소거활성을 보였다. TDS 나노입자는 자외선을 조사시킨 CCD-986sk에서 MMP-1의 발현을 41.4% 감소시켰다.TDS 용액과 TDS 나노입자를 가지고 salmonella typhimurium, listeria monocytogenes에 대하여 항균활성을 측정하였다. TDS 나노입자의 경우 양성대조군의 항균활성과 비슷한 결과를 나타내었다. 이러한 결과들로TDS 나노입자가 항산화, 미백, 주름개선 효능같은 향장 소재로서의 적용이 가능할 것이라 생각된다.
In this study, we investigated antioxidant activities and whitening effects of Acer mono sap by encapsulation of nanoparticles. Acer mono sap was through ultra high pressure process and then encapsulated by lecithin. Nano-encapsulated The nanoparticles of Acer mono sap showed highest free radical scavengering effect as 89.7% in adding sample (1.0 mg/ml), compared to sap of non-encapsulation. It was showed strong inhibition effect on melanin production test by Clone M-3 cells as 47.8%. High inhibitory of tyrosinase was also measured as 85.8% by adding lecithin nano-particle of 1.0 mg/ml. The nano-particles also showed 14.8% of low cytotoxicity against human normal fibroblast cells in adding 1.0 mg/ml of the highest concentration. These results indicate that Acer mono sap may be a source of cosmetic agents capable of improving whitening effect and antioxidant activites.
This study showed the increase of antitumor activities of water soluble E. sinica extract by nano-encapsulation process with lecithin. Five groups of lecithin only group (LO), lecithin nano-encapsulated E. sinica group (LE), E. sinica only group (EO), one negative control group (NCO) and positive control group (PCO) were set for several anticancer experiment and fed into Sarcoma-180 injected mice. The cytotoxicity of LE on the human normal kidney cell (HEK293) showed 14.8% lower than 19.2% of EO and 18.4% of LO. Growth of human liver carcinoma cell and human stomach carcinoma cell as representative of digestive system in vitro was inhibited up to about 85.1% and 87.3%, in adding 1.0 mg/ml of LE, which values 15% higher than that from conventional EO. The survival rates of each mice group were 40%, 63%, 48%, 33% and 100%, respectively after 40 days of injecting Sarcoma-180. The increment of their body weights of the extract feeding groups was suppressed down to 10~15%, compared to the negative control. The nano-particles also reduced the hypertrophy of the internal organs such as spleen and liver down to 15~20%, compared to those as the other groups. Among them, LE effectively reduced the size of tumor form to 20%. From these results, in vitro and in vivo antitumor activities of E. sinica could be enhanced by using nano-encapsulation process with lecithin because of better permeation into the cancer cells by confocal observations.
Phosphatidylcholine was used to encapsulate aqueous extracts of Centella asiatica, and its biological activity was compared with another aqueous extracts. Nanoparticle of C. asiatica was made by encapsulation to w/o type spherical liposome which of aqueous extracts seized with oil phase as 78.2 nm average diameter. Cytotoxicity of the nanoparticle was measured on human skin fibroblast cells, CCD-986sk, and showed lower cytotoxicity on 1.0 mg/ml of highest concentration as 28% than that of another extracts. The nanoparticle showed the highest promotion of human B and T cell growth up to 138% and 135%, respectively, compared to the control. and the NK cell growth was promoted up to 8% higher than the control in proportion to secretion of IL-6 and TNF-α from immune cell growth. Also nanoparticle showed highest inhibition activity of hyaluronidase on 1.0 mg/ml of highest concentration as 60.5%. It seems that because of enhanced biological application of aqueous extracts on cell through nano-encapsulation process.
This study was performed to improve antioxidant activities and skin-whitening effects of Rubus coreanus Miquel extracts by nano-encapsulation. R. coreanus was extracted at 60℃ and encapsulated by lecithin and gelagine. Nano-encapsulated extracts showed highest free radical scavengering effect as 97.62% in adding sample (500 μg/ml), compared to the extracts from conventional processes. It was showed strong inhibition effect on melanin production test by Clone M-3 cells as 55.23%. High inhibitory potency on tyrosinase was also measured as 155.8% by adding nano-sample of 1 mg/ml. The improvement of biological activity was demonstrated by real time confocal microscope. We could consider that the water soluble extracts of R. coreanus could be definitely enhanced by nano-encapsulated as a potent natural resources for antioxidant and skin-whitening agent.
This study was performed to improve immune activities of Rubus coreanus Miquel by encapsulation of nanoparticles. Immuno-activities of R. coreanus were investigated through aqueous extracts associated with process of water at 60℃. It showed high promotion of human B and T cells growth about 50%, compared to the case of other conditions. The secretion of IL-6 and TNF-α was also enhanced as 2.44×10-4pg/cell and 1.94×10-4pg/cell, results by adding nano samples. NK cell activation was improved up to 29% higher than the conventional extraction process. The secretion of NO from macrophage showed 14.9 μm on the nano-encapsulation process extracts, which was higher than others. The size of nanoparticles was in the range of 50~300 nm, which can effect the penetration into the cells. It was clearly observed by real time confocal microscope.
This study was performed to investigate improving immune activities of natural water-soluble sulforaphane extracted from Brassica oleracea var. italica by nano encapsulation process. The nanoparticles of the sulforaphane extracted with ultrasonification process at 60℃ promoted human B and T cell growth, about 7~35% compared to the control. The secretion of IL-6 and TNF-α from T cells were also enhanced as 2.6×10-4pg/cell and 2.1×10-4 pg/cell, respectively, by the adding nano samples. NK cell activation was improved about 8%, compare to the control in adding cultured medium of T cell added nano samples. It was also found that sulforaphane extracted from B. oleracea var. italica had highly inhibitory activity on hyaluronidase as IC50 about 200 μg/ml. It can be concluded that natural water-soluble sulforaphane samples by nano-encapsulation, each size is 200 nm, extracted from B. oleracea var. italica has high immune activities through higher efficiency of bio-activation than conventional extracts.