Effective control of the heat generated from electronics and semiconductor devices requires a high thermal conductivity and a low thermal expansion coefficient appropriate for devices or modules. A method of reducing the thermal expansion coefficient of Cu has been suggested wherein a ceramic filler having a low thermal expansion coefficient is applied to Cu, which has high thermal conductivity. In this study, using pressureless sintering rather than costly pressure sintering, a polymer solution synthesis method was used to make nano-sized Cu powder for application to Cu matrix with an AlN filler. Due to the low sinterability, the sintered Cu prepared from commercial Cu powder included large pores inside the sintered bodies. A sintered Cu body with Zn, as a liquid phase sintering agent, was prepared by the polymer solution synthesis method for exclusion of pores, which affect thermal conductivity and thermal expansion. The pressureless sintered Cu bodies including Zn showed higher thermal conductivity (180 W/m·K) and lower thermal expansion coefficient (15.8×10−6/℃) than did the monolithic synthesized Cu sintered body.
Monodispersed and nano-sized Cu powders were synthesized from copper sulfate pentahydrate inside a nonionic polymer matrix by using wet chemical reduction process. The sucrose was used as a nonionic polymer network source. The influences of a nonionic polymer matrix on the particle size of the prepared Cu powders were characterized by means of X-ray diffraction), scanning electron microscopy), and particle size analysis). The smallen Cu powders with size of approximately 100 nm was obtained with adding of 0.04M sucrose at reaction temperature of . The particle size of the Cu powders prepared by the reduction inside polymer network was strongly dependent of the sucrose content and reaction temperature.