Liquid phase exfoliation of natural graphite is an industrially effective solution for graphene preparation. However, many countries have identified natural graphite as a strategic resource and restricted its mining. In this report, we used abundant and readily available needle coke (NC) as a graphene exfoliation precursor and sodium carboxymethyl cellulose (CMC) as a dispersant to prepare a sandwich structured conductive graphitized NC nanosheets (GNCNs) by liquid phase exfoliation, freeze-drying and high-temperature graphitization, in which a graphene layer is sandwiched between two thin CMC layers. CMC could increase the liquid absorption and retention ability of the conductive agent and improve the migration rate of lithium ions. The highly ordered graphene layer could accelerate the transmission of electrons. The GNCNs with 0.4 wt% CMC addition showed good rate performance (144.6 mAh g− 1 at 5 C) and high cycle stability (96.2% after 200 cycles at 1 C) for LiFePO4 (LFP) battery. The traditional Super-P (SP) conductive agent exhibited low-rate performance (113.9 mAh g− 1 at 5 C) and cycle performance (89.9% after 200 cycles at 1 C). This study offers a novel approach to selecting graphene precursors and has promising applications for conductive additives in high-performance LFP batteries.
This study examined the effects of micro- (crystallinity) and macro (orientation)-crystalline properties of graphite on the initial efficiency, discharge capacity, and rate performance of anodic materials. Needle coke and regular coke were selected as raw materials and pulverized to 2–25 μm to determine the effects of crystalline properties on particle shape after pulverization. Needle coke with outstanding crystallinity had high initial efficiency, and smaller particles with larger specific surface areas saw increased irreversible capacity due to the formation of SEI layers. Because of cavities existing between crystals, the poorer the crystalline properties were, the greater the capacity of the lithium ions increased. As such, regular coke had a 30 mAh/g higher discharge capacity than that of needle coke. Rate performance was more affected by particle size than by crystalline structure, and was the highest at a particle distribution of 10–15 μm.
The porous carbons with high specific surface area and excellent electrochemical properties were prepared using three types of green needle coke as raw materials. Electrochemical performances of the porous carbons derived from different microstructure green needle coke were investigated. The XRD and Raman spectra demonstrated that the content of the ordered carbon microcrystals were decreased and the content of amorphous and cross-linked structure were increased in the porous carbons with comparison to the raw materials. The results of N2 adsorption–desorption analysis verified that the content of ordered microcrystalline structure in the raw materials evidently influence the specific surface area and pore size distribution of the porous carbons. The porous carbon with 1665 m2 g−1 specific surface area and 2.89 nm average pore size has shown that the specific capacitance was 288 F g−1 at the current density 1 A g−1. Furthermore, the capacity retention was 94.93% and the Coulombic efficiency was 92.87% after 5000 charge/discharge cycles.
Physical and electrochemical qualities were analyzed after KOH activation of a direct methanol fuel cell using needle coke as anode supporter. The results of research on support loaded with platinum-ruthenium suggest that an activated KOH needle coke container has the lowest onset potential and the highest degree of catalyst activity among all commercial catalysts. Through an analysis of the CO stripping voltammetry, we found that KOH activated catalysis showed a 21% higher electrochemical active surface area (ECSA), with a value of 31.37 m2/g, than the ECSA of deactivated catalyst (25.82 m2/g). The latter figure was 15% higher than the value of one specific commercial catalyst (TEC86E86).
Needle coke is an important material for graphite electrodes. Delayed coking is used to produce needle coke. Producing good quality needle coke is not simple because it is a multi-parameter controlled process. Apart from that, it is important to understand the mechanism responsible for the delayed coking process, which involves mesophase formation and uniaxial rearrangement. Temperature and pressure need to be optimized for the different substances in every feedstock. Saturate hydrocarbon, aromatic, resin and asphaltene compounds are the main components in the delayed coking process for a low Coefficient Thermal Expansion value. In addition, heteroatoms, such as sulphur, oxygen, nitrogen and metal impurities, must be considered for a better graphitization process that prevents the puffing effect and produces better mesophase formation.