The separation of zirconium and hafnium using tributyl phosphate (TBP)-Dodecane extractants in nitric acid medium was performed. Zirconium oxychloride, used as extraction feed, was obtained from the synthesis of Kalimantan zircon sand concentrate smelted using NaOH. The extraction process was carried out by dissolving chloride-based metals in nitric acid media in the presence of sodium nitrate using TBP-Dodecane as an extractant. Some of the extraction parameters carried out in this study include variations in organic phase and aqueous phase (O/A), variations in contact time, and variations in nitric acid concentration. Extraction was carried out using a mechanical shaker according to the parameter conditions. X-ray fluorescence (XRF) was used for elemental (Zr and Hf) composition analysis of the aqueous solution. The results showed that zirconium was separated from hafnium at optimum conditions with an organic/aqueous ratio of 1:5, contact time of 75 min, and an HNO3 concentration of 7 M. The resulting separation factor of zirconium and hafnium using TBP-Dodecane was 14.4887.
The pore structure of pitch-based activated carbon prepared by physical activation was improved by nitric acid treatment of pitch. The nitric acid treatment introduced oxygen and nitrogen functional groups on pitch, and increased pitch molecular weight by cross-linking. The introduced oxygen and nitrogen functional groups on pitch were removed during the carbonization process, so they did not directly affect the physical activation process. The increased pitch molecular weight induced an increase of the pitch softening point. The increased softening point prevented rearrangement between the pitch molecules during the carbonization process, thereby inhibiting the orientation improvement of pitch molecules. The crystal degree of the carbonized pitch was reduced due to the inhibition of the orientation improvement. The reduced crystal degree increased reactivity between carbonized pitch and activation agent ( CO2) and formed micropores, so that activated carbon with a high specific surface area could be prepared.
제 4 차 산업혁명이 일어남에 따라 각국의 정부와 기업들은 보다 환경친화적인 정책과 기술 개발에 힘쓰고 있다. 배기가스 배출과 소음이 거의 없는 전기차 및 수소차의 개발, 그리고 이를 보편화 하기 위한 정부의 정책 등 기존의 경제, 산업 구조를 친환경적으로 바꾸려는 시도가 많이 이루어지고 있다. 최근 여러 환경문제를 해결하기 위해 각종 유해 가스 흡착 및 폐수 처리용으로 활성탄을 많이 사용하고 있으나 흡착질의 특성에 따라 요구되는 표면 특성이 다르기 때문에 수요에 걸맞는 활성탄의 개발이 점차 요구되고 있는 실정이다. 따라서 본 연구에서는 친수성 유기물 제거에 유리한 활성탄을 개발하고자 C-O, C-O-C, C=O 및 O=C-O 등과 같은 친수성 작용기를 질산처리 방법을 통해 활성탄 표면에 효과적으로 도입하는 연구를 진행하였다. 질산을 활용하여 끓는점 및 다양한 농도 조건에서 활성탄을 환류, 개질하였고, 이를 세척 후 고온에서 탄화시켜 활성탄의 표면을 개질하였다. 제조된 개질활성탄은 활성탄의 비표면적, mesopore 및 micropore 의 함량을 알기 위하여 BET 를 이용하여 측정하였고, 4 M 120 ℃에서 개질한 결과 가장 높은 792.22 m2g-1 으로 확인되었다. 또한 제조된 활성탄의 표면 및 기공 특성 변화를 확인하기 위해 SEM, XPS, EDX, BET 등의 분석을 실시하였으며 질산 처리 정도에 따른 특성 변화에 대해 비교 고찰하였다.
In this study, extraction of uranium(VI) from an aqueous nitric acid solution was investigated using tri-n-butyl phosphate (TBP) as an extractant in an ionic liquid, 1-alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide ([Cnmim][Tf2N]). The distribution ratio of U(VI) in 1.1 M TBP/[Cnmim][Tf2N] was significantly high when the concentration of nitric acid was low. The value of the distribution ratio decreased as the concentration of the nitric acid increased at lower acidities, and then increased with a nitric acid concentration of up to 8 M. This can be attributed to the different extraction mechanisms of U(VI) based on nitric acid concentrations. Thus, a cation exchange at low acidity levels and an ion-pair extraction at high acidity levels were suggested as the extraction mechanism of U(VI) in the TBP/[Cnmim][Tf2N] system.
To prepare activated carbon with a high specific surface area, oxygen functional groups (OFGs) that can serve as useful electron donors during KOH activation were treated with nitric acid and incorporated into activated carbon. OFGs are incorporated differently according to the surface characteristics of starting materials. Up to 22.46% OFGs are incorporated into wood-based activated carbons (WACs), the C=O, COOH contents was 1.90, 17.05%, respectively. Whereas up to 12.82% OFGs are incorporated into coconut shell-based activated carbons, the C=O, COOH contents was 4.12, 6.15%, respectively. The OFGs used for increasing the specific surface area are the carbonyl group, and as the content of the functional group increases, the carbonyl group spreads to the carboxyl group. The specific surface area of activated carbons increased by 10–68% with an increase in the carbonyl group up to 6% (maximum point of carbonyl group). On the other hand, the specific surface area for WACs increased when the carboxyl group was 10% or below, but decreased by 6–15% when it increased to 10% or excess.
이온성 액체를 이용하여 질산 용액으로부터 Am(Ⅲ)과 Eu(Ⅲ)의 추출 거동을 조사하고 이온성 액체의 활용가능성을 살펴보았다. 이온성 액체로는 1-alkyl-3- methylimidazolium bis(trifluoromethylsulfonyl)imide ([Cnmim][Tf2N])을 사용하였고, noctyl( phenyl)-N,N-diisobutyl carbamoylmethyl phosphine oxide (CMPO)와 tri-n-butylphosphate (TBP)를 추출제로 사용하여, Am(Ⅲ)과 Eu(Ⅲ)의 추출 분배계수를 질산농도, CMPO, TBP와 같은 변수들의 함수로서 측정하였다. 이온성 액체를 사용함으로써 기존의 n-doodecane (n-DD)과 비교하여 추출 효율이 현저히 증가하였다. 질산 용액의 농도가 높을수록 Am(Ⅲ)과 Eu(Ⅲ)의 추출률은 감소하였으며, Eu(Ⅲ)의 추출률은 Am(Ⅲ)보다 전반적으로 작았다. 이온성 액체를 이용한 Am(Ⅲ)과 Eu(Ⅲ)의 추출 메카니즘은 n-DD와 같은 분자성 유기용매를 사용하는 경우와는 달리 양이온 교환 메카니즘에 의해 일어나는 것으로 판명되었다. 사용한 모든 이온성 액체에 대하여 Am(Ⅲ)과 Eu(Ⅲ)의 추출 분배계수는 CMPO의 농도가 높을수록 증가 하고, CMPO 농도에 대한 추출 데이터의 직선 기울기 값은 약 3.0으로 이온성 액체를 이용한 Am(Ⅲ)과 Eu(Ⅲ)의 추출반응에서 3분자의 CMPO가 복합착물을 형성하는 것으로 나타났다.
5 nm-thick SiO2 layers formed by plasma-enhanced chemical vapor deposition (PECVD) are densified to improve the electrical and interface properties by using nitric acid oxidation of Si (NAOS) method at a low temperature of 121 oC. The physical and electrical properties are clearly investigated according to NAOS times and post-metallization annealing (PMA) at 250 oC for 10 min in 5 vol% hydrogen atmosphere. The leakage current density is significantly decreased about three orders of magnitude from 3.110 × 10−5 A/cm2 after NAOS 5 hours with PMA treatment, although the SiO2 layers are not changed. These dramatically decreases of leakage current density are resulted from improvement of the interface properties. Concentration of suboxide species (Si1+, Si2+ and Si3+) in SiOx transition layers as well as the interface state density (Dit) in SiO2/Si interface region are critically decreased about 1/3 and one order of magnitude, respectively. The decrease in leakage current density is attributed to improvement of interface properties though chemical method of NAOS with PMA treatment which can perform the oxidation and remove the OH species and dangling bond.
본 연구에서는 대표적인 HNS 중 하나인 질산(HNO3)의 유출사고가 해양생태계에 미치는 영향을 평가하고자, (1) 식물플랑크톤(Skeletonema costatum)을 이용한 성장저해시험, (2) 무척추 동물(Brachionus plicatilis, Monocorphium acherusicum), (3) 어류(Cyprinodon variegatus) 및 (4) 발광박테리아(Vibrio fischeri)를 이용한 급·만성 독성시험을 질산의 유출로 인한 (1) pH 변화와 사고 후 질산에서 해리된 (2) 질산염(NO3-) 농도의 변화에 대해 각각 수행하였다. HNO3를 이용한 pH 변화에 대한 독성시험 결과, M. acherusicum이 무영향농도(NOEC), 최저관찰영향농도(LOEC) 및 반수영향농도(72h-EC50) 값이 각각 pH 7(0.3 mM), pH 5(1.1 mM) 및 pH 5.2(1.4 mM)로 가장 민감한 영향이 나타났다. NO3-에 대한 독성시험의 결과, B. plicatilis의 만성독성시험(개체군 성장률시험)결과, NOEC, LOEC 및 96h-EC50 값이 각각 5.9 mM, 11.8 mM 및 32.6 mM로 가장 민감한 영향이 나타났다. 결론적으로 질산 유출사고로 인한 해양생물의 독성영향은 pH의 경우, 선박의 최단 인접지역을 제외하면 그 영향은 극히 미미할 것으로 판단되며 질산염의 경우, 해양생물의 생존 및 번식에 직접적으로 영향을 미칠 수 있을 정도의 농도는 일반적인 사고해역에 현실적으로 존재 할 수 없는 농도로 판단된다.
Benzene was oxidized by binary oxidants composed of nitric acid and hydrogen peroxide at 80℃. The product obtained was analyzed with gas chromatograph-mass spectrometer. Eight high value compounds, 2-nitrophenol, 2-chloro-6-nitrophenol, 4-chloro-2- nitrophenol, 2-chloro-4-nitrophenol, 2,4-dinitrophenol, 4-nitrophenol, 2,6-dinitrophenol and 2-chloro-4,6-dinitro-phenol were found, which they have high contents in the range from 4.28% to 32.52%. These compounds are very widely used in organic synthesis. e.g., synthesizing dye, medicines and chemical reagents, pesticide, explosive, polymer, etc.
저온은 식물 생장을 저해하는 주된 요인이며 병원균에 대한 감수성을 증가시킨다. 그러므로 식물체에서 스트레스 내성을 증대시키는 것은 불리한 환경 조건에서 살아 남기 위한 중요한 전략이다. 본 실험의 목적은 고추 묘에서 저온 내성과 식물병 발생에 대한 외생 살리실산(SA)과 일산화질소(NO) 처리의 효과를 밝히는 것이다. 정식 후 23일 동안 고추 묘(Capsicum annuum L. ‘기대만발’)는 온도 20/25oC(낮/밤), 광주기 15시간, 광도 145±5μmol·m−2·s−1 의 정상적인 생육환경에서 자랐다. 1주일에 2번 계면활성 제 0.1%를 포함한 SA와 NO 3mL을 고추 묘에 각각 분사 해주었다. 처리 후 고추 묘는 암 상태에서 6시간 동안 4oC 저온에 노출시킨 후 정상적인 생육환경에서 2일 동안 회복시켜주었다. 저온 스트레스에 대한 식물 내성을 평가 하기 위해 저온 처리 후 생육특성, 엽록소 형광 값, 세포 막 투과성을 측정하였다. 총 페놀릭 농도와 항산화도는 실험하는 동안 측정하였다. 또한, 고추의 점무늬병과 풋마름 병 발생 정도도 조사하였다. 저온 처리 전·후를 비교하여 대조구 고추묘에서는 저온에 의해 상대적으로 많은 수분을 손실하여 건물율이 높지만 SA와 NO 처리 된 고추 묘는 비슷한 건물율을 유지하였다. 저온 처리 후 대조구에 비해 SA와 NO 처리구의 전해질 유출 값은 더 낮았다. 저온 처리 동안 SA와 NO 처리구의 엽록소 형광값은 약 0.8 수준으로 유지하였지만 대조구는 빠르게 감소하였다. 화학적 처리 동안 SA 처리구의 총 페놀릭 농도와 항산화도는 NO 처리구보다 높았다. 또한 저온 처리 후 대조구와 NO 처리구의 총 페놀릭 농도는 증가하였다. 고추에서 풋마름병에 대한 저항성은 SA가 보다 효과적이었다. 본 실험의 결과는 SA와 NO의 외생처리는 고추 묘의 저온 내성을 증대시켰고 병 발생 정도를 감소시키는 데 효과적이었음을 보여준다.
본 연구에서는 2007년 12월 여수시 백도 동북해역에서 침몰한 질산 화물선에서 질산 및 연료유 이적과 관련하여 이적 전, 중 및 후의 해양환경 변화를 파악하고자 조사를 실시하였다. 질산 화물선 침몰해역을 중심으로 해서 그 영향을 미칠 것으로 판단되는 주변일대 해역 (반경 약 10km 이내 해역) 에서의 10개 정점을 선정하여 질산 및 연료유 이적 전,후의 조사를 통해 해양수질 및 해저퇴적물환경을 파악하고자 하였다.
본 연구목적은 비-가시성 금 정광(Au = 1,840.00 g/t)으로부터 금을 단체분리 시키기 위하여 마이크로웨이브-질산침출 실험을 수행하였다. 이를 위해 질산농도 효과, 마이크로웨이브 침출시간 효과 그리고 시료 첨가량 효과에 대하여 마이크로웨이브-질산침출 실험을 수행하였다. 본 연구의 실험조건에서는 금이 전혀 침출되지 않은 것으로 조사되었다. 불용성-잔류물의 무게는 질산 농도, 마이크로웨이브 침출시간 그리고 시료 첨가량이 증가할수록 감소하는 경향으로 나타났다. 불용성-잔류물에 대하여 XRD 분석한 결과 석고와 anglesite가 나타나는데 이는 정광에 포함된 방해석과 방연석이 질산용액과 반응하여 생성된 것으로 사료된다. 불용성-잔류물에 대하여 납-시금법을 수행한 결과 정광보다 금 함량이 최소 1.3배(Au = 2,464.70 g/t)에서 최대 28.8배(52,952.80 g/t)로 높게 나타났다. 그러나 납-시금법에서 회수된 금 함량은 gold nugget effect가 매우 심하게 나타났다. 향후, 마이크로웨이브-질산침출 실험에서 정광의 시료채취 방법을 개선하고, 더 작은 기공 크기의 여과지를 사용하여 침출용액을 여과하고 납-시금법에서 여과지를 태워서 시료로 투입하는 방법을 수행한다면 gold nugget effect를 감소시킬 수 있을 것으로 기대된다.
본 연구 목적은 비-가시성 금 형태로 산출되는 황화광물 정광을 마이크로웨이브-질산용출하여 황화광물을 효과적으로 용해시키고자 하였고, 고체-잔류물을 납-시금법을 적용하여 금을 회수하고자 하였다. 따라서 질산농도, 용출시간 그리고 시료 첨가량 효과에 대하여 마이크로웨이브-용출실험을 각각 수행하였다. 고체-잔류물의 무게 감소율은 질산농도가 증가할수록 그리고 용출시간이 증가할수록 증가 하였지만 시료 첨가량이 증가하면 무게 감소율이 감소하였다. 마이크로웨이브-질산용출을 수행한 결과 질산농도 6 M에서, 마이크로웨이브 용출시간 18분에서 황철석이 완전히 사라진 것을 XRD 분석에서 확인하였다. 고체-잔류물에 대하여 납-시금법을 수행한 결과, 질산농도가 증가할수록 그리고 용출시간이 증가할수록 함량이 증가된 금 입자들을 회수하였다. 반면에 시료 첨가량이 증가할수록 금 함량이 감소하는 입자들을 회수하였다.
본 연구는 금 정광에 함유된 비소(As) 및 비스무스(Bi)와 같은 페널티 원소(penalty elements)를 제거하기 위한 목적으로 마이크로웨이브-질산침출을 이용하였다. 또한, 금 정광 시료로부터 금 함량을 증가시키고자 하였다. 침출조건은 페널티 원소의 제거를 향상시키기 위해 질산농도, 침출시간 그리고 고액비를 변화하였다. 실험결과 고체-잔류물에서 시료무게 감소율, 비소와 비스무스의 제거율 그리고 금 함량은 질산농도와 침출시간이 증가할수록 그리고 고액비가 감소할수록 증가하였다. 최대 비소와 비스무스 제거율 및 금 함량이 얻어지는 침출조건은 질산용액의 농도 6 M, 침출시간 5분이었다. 이 때, 고체-잔류물 시료의 무게 감소는 87 %, 비소 제거율은 98.23 %, 비스무스는 거의 제거(100 %)되었고 금 함량은 81.36 g/t에서 487.32 g/t으로 증가하였다. 고체-잔류물을 XRD로 분석한 결과, 질산농도가 증가할수록 황철석 피크들은 사라지고 반면에, 원소 황의 피크들이 증가하였다.
전자산업의 발달로 printed circuit board (PCB)와 같은 구리를 함유한 부품의 수요는 증가하고 있으며, 이를 제조 및 가공하는 과정에서 염산 및 질산과 같은 강한 산이 사용되며, 이 때 발생되는 폐산은 많은 양의 구리를 함유한 채 폐기처분된다. PCB 제조 기기의 구리 석막을 제거하기 위하여 사용되는 세척용 질산은 사용 후, 구리를 3~8% 수준으로 함유하고 있으며, 현재 발생되는 폐질산은 가성소다(NaOH)나 소석회(Ca(OH)2)를 이용하여 중화한 후 처리되고 있는 실정이다. 본 연구에서는 폐산 내 존재하는 구리를 탄산구리(CuCO3) 형태로 침전시키기 위하여 소다회(Na2CO3) 및 소석회(Ca(OH)2)를 이용하여 구리를 중화・침전시켜 회수하고, 이를 재자원화하기 위한 금속소재(금속 구리, 산화구리 등)로 제조하는 것을 목적으로 한다. 폐질산으로부터 탄산구리(CuCO3)를 회수하기 위한 반응인자로 사용 약품의 혼합비, 사용량, 침전 pH, 반응 온도를 달리하여 구리의 회수율을 최적화하였다. 또한, 회수된 탄산구리를 고온에서 산화시켜, X-ray diffraction(XRD)을 통한 결정성을 확인하고, 탄산구리를 폐염산에 용해시켜, 철 치환반응을 통한 금속구리를 제조하였다. 구리를 5% 함유한 폐질산으로부터 99.8% 이상 구리를 회수한 최적 조건은 소다회:소석회 혼합비 1:2에서, 혼합약품 사용량 300 g/kg, 침전 pH 6.5, 반응온도 70℃로 도출되었다. 또한, XRD 분석을 통한 고온산화조건은 1,100℃에서 산화구리(CuO) 전환률 99.9%를 나타냈으며, 폐염산에 용해시켜, 철 치환반응을 통해 제조된 금속구리의 구리 순도는 99.8%로 나타났다. 본 연구를 통하여 현재 중화처리 후, 매립되는 구리 자원의 재활용 방안을 도출하였으며, 이를 사업화하기 위하여 추가적 연구가 필요할 것으로 예상된다.
The adsorption experiments of lithium ions were conducted in the fixed bed column packed with activated carbon modified with nitric acid. Effect of inlet concentration, bed hight and flow rate on the removal of lithium ions was investigated. The experimental results showed that the removal and the adsorption capacity of lithium ions increased with increasing inlet concentration, and decreased with increasing flow rate. When the bed height increased, the removal and the adsorption capacity increased. The breakthrough curves gave a good fit to Bohart-Adams model. Adsorption capacity and breakthrough time calculated from Bohart-Adams model, these results were remarkably consistent with the experimental values. The adsorption capacity was not changed in the case of 3 times repetitive use of adsorbent.
A unit emission reduction of nitrous oxide (N2O) from anthropogenic sources is equivalent to a 310-unit CO2 emission reduction because the N2O has the global warming potential (GWP) of 310. This greatly promoted very active development and commercialization of catalysts to control N2O emissions from large-scale stationary sources, representatively nitric acid production plants, and numerous catalytic systems have been proposed for the N2O reduction to date and here designated to Options A to C with respect to in-duct-application scenarios. Whether or not these Options are suitable for N2O emissions control in nitric acid industries is primarily determined by positions of them being operated in nitric acid plants, which is mainly due to the difference in gas temperatures, compositions and pressures. The Option A being installed in the NH3 oxidation reactor requires catalysts that have very strong thermal stability and high selectivity, while the Option B technologies are operated between the NO2 absorption column and the gas expander and catalysts with medium thermal stability, good water tolerance and strong hydrothermal stability are applicable for this option. Catalysts for the Option C, that is positioned after the gas expander thereby having the lowest gas temperatures and pressure, should possess high deN2O performance and excellent water tolerance under such conditions. Consequently, each deN2O technology has different opportunities in nitric acid production plants and the best solution needs to be chosen considering the process requirements.
태국산과 베트남산의 용안육 원료 및 그 발효물의 전자공여능, 일산화질소(NO) 생성효과, 인체암 세포주인 자궁경부암세포(HeLa) 및 간암세포(HepG2)의 항암활성 효과를 조사하였다. 원료 용안육의 총 유기산은 태국산 용안육(473.49 mg/g)이 베트남산(148.48 mg/g) 용안육에 비하여 3.2배 높은 함량을 나타내었고, 전체 유기산의 각각 89.2%와 86.8%를 나타내었으며, 주요 유기산은 formic acid와 malic acid