Recently, considerable attention has been given to nickel-based superalloys used in additive manufacturing. However, additive manufacturing is limited by a slow build rate in obtaining optimal densities. In this study, optimal volumetric energy density (VED) was calculated using optimal process parameters of IN718 provided by additive manufacturing of laser powder-bed fusion. The laser power and scan speed were controlled using the same ratio to maintain the optimal VED and achieve a fast build rate. Cube samples were manufactured using seven process parameters, including an optimal process parameter. Analysis was conducted based on changes in density and melt-pool morphology. At a low laser power and scan speed, the energy applied to the powder bed was proportional to and not . At a high laser power and scan speed, a curved track was formed due to Plateau-Rayleigh instability. However, a wide melt-pool shape and continuous track were formed, which did not significantly affect the density. We were able to verify the validity of the VED formula and succeeded in achieving a 75% higher build rate than that of the optimal parameter, with a slight decrease in density and hardness.
The demand for chiller equipment that keeps each machine at a constant temperature to maintain the best possible condition is growing rapidly. PID (Proportional Integral Derivation) control is a popular temperature control method. The error, which is the difference between the desired target value and the current system output value, is calculated and used as an input to the system using a proportional, integrator, and differentiator. Through such a closed-loop configuration, a desired final output value of the system can be reached using only the target value and the feedback signal. Furthermore, various temperature control methods have been devised as the control performance of various high-performance equipment becomes important. Therefore, it is necessary to design for accurate data-driven temperature control for chiller equipment. In this research, support vector regression is applied to the classic PID control for accurate temperature control. Simulated annealing is applied to find optimal PID parameters. The results of the proposed control method show fast and effective control performance for chiller equipment.
In this study, a smart skin system that combines SPD (suspended particle display) and LGG (Lighting Guide Glass) and its optimal control method was developed for the purpose of simultaneously reducing the lighting load and cooling load in office buildings. And a demonstration site was built to test the results. The demonstration site was constructed as an experimental group with a smart skin system installed and a control group with a general window system installed. When the cooling energy consumption of the experimental group to which the smart skin system was applied was reduced by about 36.9% compared to the control group, the lighting energy was also reduced by 54.4%.
In this study, an algorithm for control of SPD(Suspended Particles Display) on Smart Skin was proposed. The office with SPD located in Jeonju, Jeollabuk-do was modeled and simulated using TRNSYS18. Through simulation, the energy and lighting consumption of building were analyzed The two kinds of control algorithm(SPD and dimming control method for cool energy and lighting energy saving(CASE 1) and improved control method(CASE 2)) were compared. For this research, Two models(with and without SPD and dimming control) were analyzed by comparing the cooling energy and the light energy consumption was reduced 15.1%, and the lightind energy consumption was reduced by 39.2% more than the model without SPD and dimming control. But, at the improved control method(CASE 2) the cooling energy consumption was reduced of more 2.5% and lighting energy consumptions was reduced of more 18.3% than CASE 1. When using SPD and dimming control, lighting energy consumptions showed more sensitive to solar radiation than cooling energy consumptions. As the improved control method(CASE 2) showed more advantageous saving tate than SPD and dimming control metrhod for cool energy and lighting energy saving(CASE 1), it was found that the improved control method (CASE 2) must be utilized in practice for SPD and dimming control.
구조물의 진동에 의해 유발되는 사용성, 안정성 저하를 방지하고, 성능을 개선하기 위하여 많은 진동제어시스템이 사용되어 왔다. 제어기 설계가 H2-norm, H∞-norm 으로 분리되어 독립적으로 이루어지다가 LMI 기법에 의하여 보다 효율적인 제어기 설계가 가능하게 되었다. 본 연구에서는 관심지점의 구조물 응답을 특정한 값 이하로 보장한 상태에서 제진장치 구동에 필요한 변수를 최소 화하는 제어알고리듬을 개발하여 능동형뿐만 아니라 수동형제진장치에도 적용하는 방안을 제시하였다. 관심지점의 구조물 응답의 제한은 요구 등가감쇠비와 H∞-norm을 연계하여 구속조건으로 설정하고 목적함수는 제진장치의 이송거리 또는 댐퍼 용량은 H2-norm으 로 표현하는 혼합제어를 구성하였다. 본 연구에서 제안된 혼합제어 기법을 능동질량감쇠기와 등가치환 점탄성 댐퍼가 설치된 구조물에 적용하여 수치적으로 검증하였다. 수치해석결과, 혼합제어문제를 LMI표준형으로 전환하면 능동형, 수동형 제진장치 설계를 보다 용이하게 적용 가능함을 알 수 있었다.
A smart connective control system was invented recently for coupling control of adjacent buildings. Previous studies on this topic focused on development of control algorithm for the smart connective control system and design method of control device. Usually, a smart control devices are applied to building structures after structural design. However, because structural characteristics of building structure with control devices changes, a iterative design is required for optimal design. To defeat this problem, an integrated optimal design method for a smart connective control system and connected buildings was proposed. For this purpose, an artificial seismic load was generated for control performance evaluation of the smart coupling control system. 20-story and 12-story adjacent buildings were used as example structures and an MR (magnetorheological) damper was used as a smart control device to connect adjacent two buildings. NSGA-II was used for multi-objective integrated optimization of structure-smart control device. Numerical simulation results show the integrated optimal design method proposed in this study can provide various optimal designs for smart connective control system and connected buildings presenting good control performance.
이 논문에서는 다중 재난을 고려한 복합 구조제어 시스템의 최적 설계방법을 제시한다. 한 가지 유형의 위험에 대해 하나의 시스템이 설계되는 전형적인 구조제어 시스템과는 달리, 구조물의 지진 및 바람에 의한 진동응답을 저감하기 위해 능동 및 수동제어 시스템에 대한 동시 최적 설계방법을 제안하였다. 수치 예로서, 30층 빌딩 구조물에 설치된 30개의 점성 댐퍼와 복합형 질량 감쇠기에 대한 최적 설계문제를 보였다. 최적화 문제를 풀기 위해 자체적응 화음탐색(harmony search, HS)알 고리즘을 채택하였다. 화음탐색 알고리즘은 사람이 연주하는 악기의 튜닝 과정을 모방한 전역 최적화를 위한 메타 휴리스틱 진화 연산방법의 하나이다. 또한 전역 탐색 및 빠른 수렴을 위해 자가적응적이고 동적인 매개변수 조정 알고리즘을 도입하였다. 최적화 설계 결과, 능동 및 수동 시스템이 독립적으로 최적화된 표준적인 복합제어 시스템에 비해 제안한 동시 최적제어 시스템의 성능과 효율성이 우수함을 보였다.
An outrigger damper system has been proposed to reduce dynamic responses of tall buildings. In previous studies, an outrigger damper system was optimally designed to decrease a wind-induced or earthquake-induced dynamic response. When an outrigger damper system is optimally designed for wind excitation, its control performance for seismic excitation deteriorates. Therefore, a smart outrigger damper system is proposed in this study to make a control system that can simultaneously reduce both wind and seismic responses. A smart outrigger system is made up of MR (Magnetorheological) dampers. A fuzzy logic control algorithm (FLC) was used to generate command voltages sent for smart outrigger damper system and the FLC was optimized by genetic algorithm. This study shows that the smart outrigger system can provide good control performance for reduction of both wind and earthquake responses compared to the general outrigger system.
In the case where a MR-damper is employed for vibration control, it is important to decide on how much control capacity should be assigned to it against structural capacities (strength and load, etc). This paper aims to present a MR-damper's control capacity suitable for the capacities of the structure which needs to be controlled. First, a two span bridge was built equipped with a MR-damper, which constitutes a two-span MR-damper control system. Then, inflicting an earthquake load on the system, a basic experiment was performed for vibration control, and a simulation was also carried out reflecting specific control conditions such as MR-damper and rubber bearing. The comparison of the results against each other proved their validity. Then, in order to calculate an optimal control capacity of the MR-damper, structural capacity was divided into eleven cases in total and simulated. For each case, an additional load of 30 KN was inflicted everytime, thereby increasingly strengthening structural capacity. As a result of the study, it was found that the control capacity of MR-damper of 30 KN was safely secured only with lumped mass of more than 150 KN(case 6). Therefore, it is concluded the MR-damper showed the best performance of control when it exerted its capacity at around 20% of structural capacity.
This paper is concerned with an experimental research to control of random vibration caused by external loads specially in cable-stayed bridges which tend to be structurally flexible. For the vibration control, we produced a model structure modelled on Seohae Grand Bridge, and we designed a shear type MR damper. On the center of its middle span, we placed a shear type MR damper which was to control its vibration and also acquire its structural responses such as displacement and acceleration at the same site. The experiments concerning controlling vibration were performed according to a variety of theories including un-control, passive on/off control, and clipped-optimal control. Its control performance was evaluated in terms of the absolute maximum displacements, RMS displacements, the absolute maximum accelerations, RMS accelerations, and the total power required to control the bridge which differ from each different experiment method. Among all the methods applied in this paper, clipped-optimal control method turned out to be the most effective to reduces of displacements, accelerations, and external power. Finally, It is proven that the clipped-optimal control method was effective and useful in the vibration control employing a semi-active devices such MR damper.
복숭아씨살이좀벌(Eurytoma maslovskii)에 의한 전남지역 매실 낙과피해는 해안지역인 완도, 신안, 여수, 무안을 제외한 전 지역에 발생하였고 평균 피해과율은 2013년 67%, 2014년 33.3%였다. 이 씨살이좀벌은 매실 씨방에서 노숙유충으로 월동을 하는데 7, 8월의 장마철을 지나며 생존율이 30% 내외가 되었다. 알은 길이 0.68 mm, 폭 0.29 mm의 유백색이며 장타원형으로 양 끝부분에 실모양의 돌기를 붙이고 있다. 다 자란 노숙유충은 길이 6.56 mm, 폭 3.18 mm이다. 번데기는 검정색 나용이고, 성충은 암 6.97 mm, 수 4.90 mm이고 암컷의 산란관 길이는 0.64 mm였다. 성충 우화시기는 4월 상순(매실 직경 4 mm)~5월 상순(17 mm)이고, 우화 최성기는 4월 중순이었다. 성충의 평균수명은 13.5일이고, 암수 성비는 45.9 : 54.1이다. 과일당 평균 산란수는 1개 61.5%, 2개 30.8%이고 최대 4개까지 산란하였지만 동종포식에 의해 최종적으로 1마리의 유충만 서식한다. 성충의 매실에 산란시기는 4월 하순(직경 12~16 mm)이며 그 후에는 씨방벽이 딱딱하게 경화되어 유충이 씨방으로 침투가 어려워진다. 따라서 성충의 산란을 예방하기 위한 방제적기는 4월 중순부터 5일 간격으로 2~3회 적용약제를 살포하는 것이다.
Zermelo's navigation problem is that the ship reaches a particular target point in the minimum-time when it travels with a constant speed in a region of strong currents and its heading angle is the control variable. Its approximate solution for the minimum-time control may be found using the calculus of variation. However, the accuracy of its approximate solution is low since the solution is based on graph or table form from a complicated nonlinear equations. To improve the accuracy, we use a neural network. Through the computer simulation study we have found that the proposed method is superior to the conventional ones.
구조물의 풍진동 제어에 사용되는 능동질량감쇠기(Active Mass Damper, AMD)는 구조물의 가속도, 속도, 변위 응답을 계측하고 제어알고리즘에 따라 제어력을 산정한 후, 질량체에 연결된 모터 구동를 통해 제어력을 발생시키는 장치로, 핵심 설계기술은 이동 질량체의 질량, 모터용량, 이송거리를 최소화하면서 제어성능을 확보하는 데 있다. 하지만 이동질량을 최소화하는 경우 제어성능을 증가시키기 위해 AMD에 요구되는 가속도가 증가하게 되고, 이에 따라 이송거리가 증가하는 문제점이 있다. 본 연구에서는 AMD의 제어성능은 유지하면서, 질량 및 이송거리를 최소할 수 있는 방안으로 제어력 게인 스케줄링을 위한 가중함수와 등속도 원점보정을 위한 속도입력 함수를 제시하였다. 또한, 구조물 응답에서 제어 대상 신호만을 추출하기 위한 입력필터 설계 방안을 제시하여, 이에 대한 효용성 검증을 위한 해석을 수행한 후, 39층 구조물에 설치한 56ton 용량의 AMD에 적용하여 제어실험을 수행하였다. 실험 결과, 게인 스케줄링 가중함수와 등속도 원점보정 속도입력 함수에 의해 이동질량체의 이송거리를 최소화하면서도, 원점근처에서의 안정적인 거동이 가능함을 확인하였고, 입력 필터를 통해 제어 모드 이외의 신호를 제거함으로써, 목표 제어성능을 만족시킬 수 있음을 확인하였다.
이 논문은 공정변화를 보다 잘 감지할 수 있는 관리도의 개발동향에 주안점을 두고 있으며, 경제적 접근법으로 관리모수를 설정하여 공정관리 메카니즘을 사용하는데 있어서 최소의 비용을 가지도록 하여 품질 향상 비용을 절감시킬 수 있는 설계 접근방법을 조사 연구했다. 또한 CUSUM 관리도를 기존의 다양한 관리도와 결합하여 개발된 새로운 관리도를 비교했다. 비교된 관리도의 경제적 모형설계를 통하여 공정 품질에서의 경제적인 영향의 최적화를 위한 관리모수를 제시했다. 이는 공정평균의 이동을 감지하기 위한 결합 관리도를 개발하는 경제적설계 절차를 제시했다.
Material flow control (MFC) is a kind of operational policy to control of the movement of raw materials, components, and products through the manufacturing lines. It is very important because it varies throughput, line cycle time, and work-in-process (WIP) under the same manufacturing environments. MFC can be largely categorized into three types such as Push, Pull, and Hybrid. In this paper, we set various manufacturing environments to compare five existing MFC mechanisms: Push, Pull, and Hybrid (CONWIP, Gated MaxWIP, Critical WIP Loops, etc). Three manufacturing environments, manufacturing policies (make to stock and make to order), demand (low, medium, high), and line balancing (balanced, unbalanced, and highly unbalanced) are considered. The MFCs are compared in the point of the five functional efficiencies and the proposed compounded efficiency. The simulation results shows that the Push is superior in the functional efficiency and GMWIP is superior in the compounded efficiency.