송국리형 주거지의 이용 및 폐기과정은 청동기시대의 흥미로운 연구 과제 중 하나이며, 특히 내부 흑색토층의 존재는 많은 관심을 끌어왔다. 송국리 유적 제24차와 25차 발굴조사에서 내부 흑색토층 이 확인된 주거지(98호, 100호, 107호)를 대상으로 환경고고학적 연구(토양 미세형태분석 및 규소체 분석)를 수행하였다. 토양 미세형태분석 결과, 내부 흑색토층은 탄화물이 집적된 층으로 보이며 탄화 가 비교적 가까운 곳에서 일어났을 가능성을 시사한다. 아마도 지붕이나 벽체를 비롯한 상부 구조물 이 탄화되어 집적된 층일 가능성이 높다. 한편 100호 주거지의 규소체분석 결과, 중간 흑색토층 및 상부 퇴적토에서 벼와 조의 규소체가 다량으로 확인되었다. 그리고 사초과 식물의 규소체와 해면동물 골편이 출토된 것으로 보아 저지대(예, 수전) 토양을 벽체 등의 건축재로 사용했던 것으로 보인다. 또 한, 내부 흑색토층이 보이는 주거지와 수혈유구는 연접한 경우가 많아, 화재에 의한 탄화물이 주거지 와 인근 수혈 내부로 흘러 들어간 것으로 생각된다. 이를 종합하여 보면 일부 주거지는 사용이 중지된 이후, 기둥과 같은 주요 건축재를 해체하여 반출한 다음 재활용이 어려운 나머지 잔존 구조물을 소각 했던 것으로 보인다. 그리하여 탄화물이 집적되어 수혈 중간부에 흑색토층을 생성했던 것으로 추정된 다. 본 연구에서는 토양 미세형태분석과 규소체분석이 상호보완적으로 함께 수행되어 해석의 지평을 넓힐 수 있었다.
This study aims to optimize the cochlea-inspired artificial filter bank (CAFB) using El-Centro seismic waveforms and test its performance through a shaking table test on a two-span bridge model. In the process of optimizing the CAFB, El-Centro seismic waveforms were used for the purpose of evaluating how they would affect the optimizing process. Next, the optimized CAFB was embedded in the developed wireless-based intelligent data acquisition (IDAQ) system to enable response measurement in real-time. For its performance evaluation to obtain a seismic response in real-time using the optimized CAFB, a two-span bridge (model structures) was installed in a large shaking table, and a seismic response experiment was carried out on it with El-Centro seismic waveforms. The CAFB optimized in this experiment was able to obtain the seismic response in real-time by compressing it using the embedded wireless-based IDAQ system while the obtained compressed signals were compared with the original signal (un-compressed signal). The results of the experiment showed that the compressed signals were superior to the raw signal in response performance, as well as in data compression effect. They also proved that the CAFB was able to compress response signals effectively in real-time even under seismic conditions. Therefore, this paper established that the CAFB optimized by being embedded in the wireless-based IDAQ system was an economical and efficient data compression sensing technology for measuring and monitoring the seismic response in real-time from structures based on the wireless sensor networks (WSNs).
This study evaluated the quality characteristics of rice cookies prepared with different amounts (0, 3, 6, 9%) of hibiscus powder. The pH of cookie dough decreased as the amount of hibiscus powder increased. Additionally, the moisture content and spread factor were higher in groups containing hibiscus powder than in the control groups. Furthermore, the L-value decreased with increasing hibiscus powder, while the a-value increased. The incorporation of hibiscus powder into cookies decreased hardness. Additionally, consumer acceptance testing revealed that the addition of up to 6% hibiscus powder was desirable in terms of overall acceptability. The total phenol content of the control groups was 12.32 mg GAE/100 g, while the levels in the groups containing hibiscus powder ranged from 23.32 to 59.86 mg GAE/100 g. Finally, DPPH and ABTS radical scavenging activity increased with increasing hibiscus powder level. Taken together, the results of this study indicate that amending cookies with 6% hibiscus powder can improve antioxidant activities without affecting sensory quality.
In this paper, an experimental study was carried out for vibration control of cable bridges with structurally flexible characteristics. For the experiment on vibration control, a model bridge was constructed by reducing the Seohae Grand Bridge and the shear type MR damper was designed using the wind load response measured at Seohae Grand Bridge. The shear type MR damper was installed in the vertical direction at the middle span of the model bridge, and dynamic modeling was performed using the power model. The tests of the vibration control were carried out by non-control, passive on/off control and Lyapunov control method on model bridge with scaled wind load response. The performance of the vibration control was evaluated by calculating absolute maximum displacement, RMS displacement, absolute maximum acceleration, RMS acceleration, and size of applied power using the response (displacement, acceleration, etc.) from the model bridge. As a result, the power model was effective in simulating the nonlinear behavior of the MR damper, and the Lyapunov control method using the MR damper was able to control the vibration of the structure and reduce the size of the power supply.
In the case where a MR-damper is employed for vibration control, it is important to decide on how much control capacity should be assigned to it against structural capacities (strength and load, etc). This paper aims to present a MR-damper's control capacity suitable for the capacities of the structure which needs to be controlled. First, a two span bridge was built equipped with a MR-damper, which constitutes a two-span MR-damper control system. Then, inflicting an earthquake load on the system, a basic experiment was performed for vibration control, and a simulation was also carried out reflecting specific control conditions such as MR-damper and rubber bearing. The comparison of the results against each other proved their validity. Then, in order to calculate an optimal control capacity of the MR-damper, structural capacity was divided into eleven cases in total and simulated. For each case, an additional load of 30 KN was inflicted everytime, thereby increasingly strengthening structural capacity. As a result of the study, it was found that the control capacity of MR-damper of 30 KN was safely secured only with lumped mass of more than 150 KN(case 6). Therefore, it is concluded the MR-damper showed the best performance of control when it exerted its capacity at around 20% of structural capacity.
The purpose of this study was to investigate the fermentation characteristics of Yakju using fresh sprouts from common buckwheat, a Daisan cultivar, and a tartary buckwheat Daikwan 3-3 cultivar to develop a functional Yakju, which is a traditional Korean liquor. As fermentation time increased, alcohol concentration and total sugar content (expressed as Brix degrees) increased, whereas reducing sugar content decreased. In particular, alcohol formation capability was maximized from the fourth to the seventh days of the second mashing stage during the fermentation procedure, which corresponded to the abrupt rise in mashing body temperature. The pH increased slightly when the titratable acidity was kept from increasing as fermentation proceeded. Quercetin and rutin were not present in the control group but their presence in Yakju with added buckwheat sprouts continuously increased with an increase in the fermentation period. Quercetin and rutin contents were higher in the Yakju with added Daikwan3-3 buckwheat sprouts than Yakju with added Daisan buckwheat sprouts. In conclusion, adding buckwheat sprouts improved Yakju quality during fermentation. Particularly, Yakju with added Daikwan3-3 buckwheat sprouts had superior fermentation characteristics and quality.
The work of hairdressers includes washing, coloring, bleaching, permanent waving, conditioning, and cutting scalp hair. Hairdressers are subjected to a number of physical and toxicological hazards. The toxicological hazards are those resulting from exposure to a wide range of chemicals and from chemicals are usually classified active processes. In this study, twenty beauty shops were selected to assess the exposure to indoor air pollutants such as VOCs and particulate matter (PM10) during one month from September 1 to September 30, 2003. Indoor air quality of beauty shops might be worse by vehicle emissions because the beauty shops were generally located near roadway. Personal exposures to VOCs and PM10 were related to indoor concentrations of beauty shops, respectively. According to questionnaire, hairdressers responded sore throat, eye irritation, and nervousness as health effect symptoms. Conclusively, users as well as workers in beauty shop might be highly exposed to air pollutants from indoor sources and outdoor sources. Therefore, proper methods should be prepared to improve the indoor air quality in beauty shop.
본 연구에서는 압축센싱 기술인 CAFB(달팽이관 원리기반의 인공필터뱅크)가 El-Centro 지진 등 지진상황에서 구조물의 동적응답을 포함한 지진응답을 실시간으로 압축하여 획득할 수 있는지 평가하였다. 최적화된 CAFB를 무선 IDAQ 시스템에 임베디드 하였다. 이를 이용하여 대형 Shaking Table에 설치된 2-span 교량구조물의 지진응답을 실시간으로 압축하여 획득 하였다. 연구결과 압축신호는 원시신호 대비 우수한 응답성능 및 데이터 압축효과를 보였으며 이를 통해 CAFB가 지진상황에서도 구조물의 동적응답을 포함한 지진응답을 실시간으로 압축 획득할 수 있음을 확인하였다.
데이터 병목현상 등의 이유로 대용량의 동적 데이터를 무선으로 계측하여 구조물 건전도 모니터링을 수행하는 데는 한계가 있다. 이에 선행연구에서는 압축센싱 기술인 CAFB(달팽이관-영감형 인공필터뱅크)를 개발하여 무선 압축센싱 성능을 실험적으로 평가하였다. 본 논문에서는 CAFB를 적용한 무선 계측시스템의 유효성 평가를 목적으로 Kobe 지진파형으로 최적화된 CAFB를 이용해 지진응답 실험을 진행하였다. 결과적으로 Kobe 지진파형으로 최적화한 CAFB로 수신한 무선 데이터는 64~91%의 압축률을 보였으며 99% 이상의 재건율로 무선 데이터를 획득하는데 효과적임을 확인하였다.
본 논문에서는 사장교를 지탱하는 주요 부재인 케이블의 손상 위치를 빠르게 검출할 수 있는 손상평가 기술을 개발하고, 모형 교량 손상 실험을 통하여 개발한 기술의 손상평가 성능을 검증하고자 하였다. 손상평가 기술의 개발을 위하여 통계적 패턴 인식 기술인 마할라노비스 거리 이론을 활용하였으며, 복잡한 구조체의 손상위치 판별을 위하여 계측 위치별 획득 데이터의 변동성을 손상평가 기술에 반영하였다. 개발한 기술의 손상평가 성능을 확인하기 위하여 모형 사장교를 대상으로 손상 실험을 진행하였다. 그 결과, 개발한 손상평가 기술은 무손상 상태의 응답과 손상 상태의 응답을 활용하여 사장교 케이블 의 손상 위치를 검출할 수 있는 통계적 패턴을 제공하는 성능을 보이는 것을 확인하였다.
본 논문은 적재설비의 바닥 구속조건에 따른 안전성을 평가하고자 한다. 평가를 위해서 국내에서 일반적으로 사용하고 있는 파렛트랙을 대상구조물로 선정하여 진동대 실험을 진행하였다. 진동대 실험을 위한 적재설비의 바닥 구속조건을 총 4가 지(1 bolt, 2 bolts, 4 bolts, Fixed)로 구분하여 진행하였다. 실험은 인공지진파를 증가시켜가며 진행하였고, 각 층별에서의 변위응답과 영구변형을 비교하였다. 이에 따른 실험 결과, 지진 강도에 따라 기둥 바닥의 구속조건을 달리 적용하는 것이 필요하다.
In this paper, damage assessment technology based on statistical pattern recognition technology was developed for maintenance of structure and the performance of the developed technology was verified by vibration test. The damage assessment technique uses the improved Mahalanobis distance theory, which is a statistical pattern recognition technique, and developed to take account of the variability between the measured data. In order to verify the damage evaluation performance of the developed technology, a cable damage test was conducted for a cable-stayed bridge. Experimental results show that the developed damage assessment technology has the capability of extracting information that can determine the location of damage due to cable damage.
In this paper, a hydraulic damper was developed to protect the storage racks from earthquakes and the seismic performance of the storage racks was improved by applying the developed damper. In order to achieve these goals, the control capacity for the safety of the storage racks was determined, and a hydraulic damper satisfying the control capacity was designed and manufactured. In addition, the location of the hydraulic damper was determined through simulation. Finally, the shaking table test was carried out. As a result, the seismic performance improvement of the storage racks using the hydraulic damper was confirmed.
In this study, the SMG fluid was developed for compensating the defect of the MR Fluid that is commonly used in Semi-active control system. And the damper with SMG fluid have been developed for practical application. The dynamic load test was conducted to evaluate the control performance of the SMG damper at 0.5Hz and 1Hz frequency conditions and 0A and 0.5A current conditions. As a result, the remarkable performance of the SMG damper was verified.
This paper aims to developed SMC-Fractional algorithm, that is, enhances the performance of Sliding Mode Control(SMC) algorithm for pounding control of Multi-span bridges using MR-damper. The pounding control performance of SMC-Fractional algorithm has been evaluated in shaking table test on multi-span bridge. As a result of the experiment, the SMC-Fractional algorithm showed the performance od reducing the relative displacement of adjacent spans over other algorithms.
In this study, MR(Magneto-Rheological) Grease fluid was developed for compensating the settling phenomena of MR(Magneto-Rheological) fluid which is widely used in semi-active control system. In order to characterize the settling phenomena of the MRG fluid, the experimental comparison was conducted. The control performance assessment of the MRG fluid was also evaluated. As a result, it was verified that the MRG fluid have the sufficient performances to use as a material for semi-active control device.
This paper aims to developed SMC-Fractional algorithm, that is, enhances the performance of Sliding Mode Control(SMC) algorithm for pounding control of Multi-span bridges using MR-damper. The pounding control performance of SMC-Fractional algorithm has been evaluated in shaking table test on multi-span bridge. As a result of the experiment, the SMC-Fractional algorithm showed the performance od reducing the relative displacement of adjacent spans over other algorithms.
In this study, MR(Magneto-Rheological) Grease fluid was developed for compensating the settling phenomena of MR(Magneto-Rheological) fluid which is widely used in semi-active control system. In order to characterize the settling phenomena of the MRG fluid, the experimental comparison was conducted. The control performance assessment of the MRG fluid was also evaluated. As a result, it was verified that the MRG fluid have the sufficient performances to use as a material for semi-active control device.
This research is an experimental study attempting to use MR-dampers to control the complex behavior of multi-span bridge structures due to external loads such as seismic loads. For the purposes of this study, the model of components in each structure is identified, and then based on the results, a simplified system of the structure is derived. The performance of MR-dampers for complex behavior control is evaluated separately, according to the self-performance of MR-dampers and according to the performance based on applications of control algorithms. Based on the simplified system, Lyapunov control algorithm and Clipped-optimal control algorithm are applied. As a result, MR-damper is proven to be effective in the complex behavior control of multi-span bridge structures.
This study aimed to simulate the complex behavior of structures and predict test results. For this, the leading nonlinear model ‘Bouc-wen model’ was used, and rubber bearing and MR-damper were investigated. While seismic load was being applied, complex behavior of continuous structures was simulated. To test simulation performances, in addition, a seismic response test of the model structure was conducted using shaking table. Then, each structure’s displacement data were compared to simulation results. This study found that nonlinear model-based simulation results were mostly matched with test results, and they are applicable to the prediction of test results.