본 연구는 돼지의 정자와 난소내 과립막세포에서 bisphenol S(BPS)가 생존성과 활성산소 생산에 미치는 영향을 알아보고자 연구하였다. 돼지정액은 0, 5μM BPS를 처리하여 3, 6시간동안 배양하였다. 정자의 생존성은 SYBR14/PI를 이중 염색하여 분석하였으며, 활성산소의 생산을 측정하였다. 또한, BPS(0, 5, 10, 20μM)를 과립막세포에 처리하여 24, 48, 72시간동안 처리하였다. 처리 후, 세포의 생존율과 활성산소 생산(단, 5μM BPS)을 측정하였다. 그 결과, 돼지에서 정자의 생존율은 BPS에 의해 감소하였고, 활성산소의 생산은 모든 처리시간에서 증가하였다(p<0.05). 또한 과립막세포의 생존은 BPS에 의해 억제되었고, 활성산소는 유의적으로 증가하였다(p<0.05). 이상의 결과를 토대로, BPS의 노출은 정자의 활성과 번식과 관련된 세포에 나쁜 영향을 미칠 것이다.
Prolonged communication between oocytes and the surrounding somatic cells is one of the unique reproductive physiology in canine. Paracrine Kit ligand (KITL) signaling is a well-known communication between granulosa cells and the oocyte. KITL is a cytokine growth factor secreted by granulosa cells that signals via the c-kit receptor expressed by oocytes. Paracrine factors, including growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), exert their effects by binding with the kinase receptors expressed on the granulosa cells. However, the regulations of GDF9 and BMP15 in the canine KITL expression are currently poorly understood. Therefore, we investigated the effects of GDF9 and BMP15 on the expression of KITL in canine ovarian granulosa cells in vitro.
In Annexin V assay recombinant GDF9 and BMP15 did not induce apoptosis in the cultured ovarian granulosa cells. When treated, FSH significantly increased KITL expression, and hCG suppressed its expression. When both FSH and hCG were treated, the expression of KITL was affected by GDF9 and BMP15 in dose and time dependent manner in the luteal granulosa cells. GDF9 (10 ng/mL) significantly decreased KITL expression after12 h. BMP15 (10 ng/mL) significantly also decreased KITL expression after 24 h. Western blot and immunochemistry results indicate that GDF9 activated Smad2/3. After blocking ALK 4/5/7 receptors by SB, GDF9 failed to activate Smad2/3, also BMP15 did not activate Smad1/5/8 after blocking ALK 2/3/6 receptors by DM. So GDF9 exerts its effects via using ALK 4/5/7 receptors to activate SMAD2/3 signaling, and BMP15 binds ALK 2/3/6 receptors to activate SMAD1/5/8 signaling. The expression of KITL was not changed by SB or DM treatment. However, the effect of GDF9 and BMP15, which decreased the expression of KITL, was suppressed by SB or DM treatment.
In conclusion, this study provides the first evidence that recombinant GDF9 and BMP15 decrease KITL expression in canine ovarian granulosa cells.
The purpose of this study was to examine the effects of taurine and vitamin E on ovarian granulosa cells damaged by bromopropane (BP) in pigs. We evaluated cell viability, plasma membrane integrity (PMI) and apoptotic morphological change in porcine ovarian granulosa cells. The cells were treated with 1-BP (0, 5.0, 10, and 50 μM), 2-BP (0, 5.0, 10, and 50 mM), taurine (0, 5.0, 10, and 25 mM), and vitamin E (0, 100, 200, and 400 μM) for 24 h. 10 μM 1-BP and 50 μM 2-BP inhibited viability and PMI, and induced apoptosis in porcine ovarian granulosa cells (p < 0.05). Cell viability and PMI were increased by taurine (10 and 25 mM) and vitamin E (100 and 200 μM), and apoptosis decreased (p < 0.05). Finally, the porcine ovarian granulosa cells were co-treated with BPs (10 μM), taurine (10 mM) and/or vitamin E (200 μM). Cell viability and PMI in the co-treated cells were increased, and apoptosis was decreased. In conclusion, taurine and vitamin E can improve cell viability and inhibition of apoptosis in porcine ovarian granulosa cells damaged by bromopropane.
The aim of this study was to evaluate the changes of protein patterns in granulosa cells and corpus luteum in ovaries during the estrus cycle in cows. The estrus cycle was devided into five steps of follicular, ovulatory, early-luteal, mid-luteal and late-luteal phases. In results, 61 spots of total 85 spots were repeated on follicular phase and 51 spots of total 114 spots were repeated on ovulatory phase. The 40 spots of total 129 spots were repeated on early-luteal phase and 49 spots of total 104 spots were repeated on mid-luteal phase. Also 41 spots of total 60 spots were repeated on late-luteal phase. On the other hands, the 16 spots were indicated difference in follicular phase and ovulation phase had a difference 10 spots. It was showed difference No. 103 spot in ovulation phase, No. 135 spot in early-luteal phase and No. 175 and 176 spots in mid-luteal phase. Also, the 11 spots were expressed specifically in mid-luteal phase and No. 178 and 179 spots were difference of expression in late-luteal phase. We confirmed that there were 7 spots for ovulation, 4 spots for luteinization and 2 spots for luteolysis. Spot No. 89~93 in ovulation phase were transferrin, and spot No.94~98 were HSP60. Spot No. 103 was Dusty PK, spot No. 135 was OGDC- E2, and spot No. 175 and 176 were Rab GDI beta from luteinization. Spot No. 178 and 179 in luteolysis were vimentin. This results suggest that will be help to basic data about infertility.