검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 15

        2.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 연구는 탄소섬유시트의 보강겹수에 따른 I형 PFRP 휨부재의 휨보강 효과를 조사하기 위해 길이 600mm의 PFRP 휨부재와 상하부 플랜지에 1mm 두께의 탄소섬유시트로 보강하여 휨실험을 수행하였다. 또한, 탄소섬유시트의 보강겹수와 보강 위치에 따른 I형 PFRP 휨부재의 휨보강 효과와 단면 감소량에 대해 조사하였다. 그 결과 2겹으로 보강하였을 때 휨강도와 휨강성이 증가함을 확인하였다.
        4,000원
        4.
        2018.04 구독 인증기관·개인회원 무료
        In this paper, four point bending tests were carried out to analyse flexural strengthening effect by CFRP (Carbon Fiber Reinforced Polymer) layers for I shape PFRP (Pultruded Fiber Reinforced polymer) flexural member retrofitted with CFRP sheet. Comparing load-displacement relation and sectional stress distribution, the flexural strengthening effect by the number of CFRP layers was founded.
        5.
        2018.04 구독 인증기관·개인회원 무료
        In this study, we investigated the shear properties of pultruded fiber reinforced polymer plastic (PFRP) composites. Especially, we focused on the relationship between the shear properties of PFRP and other mechanical properties of PFRP composites by comparing the experimental results with the theoretical results. We compared the shear characteristics obtained by the tensile test and calculated from the theoretical equation proposed in previous work. It was found that the shear modulus of elasticity predicted by using the theoretical formula is close to the shear modulus of elasticity obtained by the 45° off-axis tensile test.
        6.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The pultruded fiber reinforced polymer plastic (PFRP) is one of the most actively studied composite materials for the structural member in construction industries. In domestic design process, the PFRP member is designed as an isotropic material having only longitudinal material properties for simplicity, because it is too complex to consider orthotrophy of PFRP perfectly. In this study, three cases of buckling analysis of PFRP plate is conducted theoretically and numerically. First, the PFRP plate is considered as an orthotropic material. Second, the PFRP plate is considered as an isotropic plate having only longitudinal material properties. Third, the PFRP plate is considered as an isotropic plate having geometric mean of longitudinal and transverse material properties. As a result of buckling analysis, a buckling strength of PFRP plate as an isotropic plate having only longitudinal material properties is about 2.21 times larger than that of PFRP plate analyzed as an orthotropic plate. On the other hand, a buckling strength of PFRP plate as an isotropic plate having geometric mean material properties is about 1.19 times larger than that of PFRP plate analyzed as an orthotropic plate. In conclusion, the safety factor of 3 used in domestic design process of PFRP member is no longer applicable due to overestimation of buckling strength of PFRP member which leads to nonconservative design.
        4,000원
        7.
        2016.04 구독 인증기관 무료, 개인회원 유료
        Pultruded fiber reinforced polymeric plastic (PFRP) has many advantages such as high corrosion resistance, high specific stength/stiffness, light weight, etc. Pultrusion is a manufacturing process for producing continuous lengths of reinforced polymeric structural shapes with constant cross-section. The mechanical property of PFRP is usually regarded as an orthotropic material. The pultruded structural shapes are usually composed of thin-walled plate element. Because the composite material has relatively low elastic moduli, the design of pultruded compression members may not be governed by the material strength limit state but by the stability limit state such as the local buckling. Therefore, the stability limit state must be checked to design pultruded thin-walled compression members. In this paper, we present the analytical study results of elastic buckling strength of PFRP orthotropic plates with different fiber volume ratios. The local buckling analysis of pultruded compression members was conducted for various composite materials using the closed-form solution. From the study it was found that if E11/E22 is increased then the plate buckling coefficient, hence the plate buckling strength, is decreased.
        3,000원
        8.
        2014.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fiber reinforced plastic (FRP) structural shapes are readily available in civil engineering applications. Among many manufacturing techniques used for FRP structural shapes, pultrusion process is one of the most widely used techniques in civil engineering applications. Pultrusion is a manufacturing process for producing continuous lengths of reinforced polymeric plastic structural shapes with constant cross-section. Pultruded composites are attractive for structural applications because of their continuous mass production with excellent mechanical properties. This paper presents the results of investigations pertaining to the bolted connection with two bolts for the pultruded FRP (PFRP) structural members. PFRP bolted connection tests were conducted with end distance to bolt diameter ratio (e1/db) and two types of bolt pattern such as horizontal (Pattern A) and vertical arrangement (Pattern B). As a result, it is found that the e1/db is recommended as the ratio of 4. In addition, it is also found that the bearing strengths at failure of the Pattern A and Pattern B have a similar value.
        4,000원
        9.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fiber reinforced polymeric plastic (FRP) materials have many advantages over conventional structural materials, i.e., high specific strength and stiffness, high corrosion resistance, right weight, etc. Among the various manufacturing methods, pultrusion process is one of the best choices for the mass production of structural plastic members. Since the major reinforcing fibers are placed along the axial direction of the member, this material is usually considered as an orthotropic material. However, pultruded FRP (PFRP) structural members have low modulus of elasticity and are composed of orthotropic thin plate components the members are prone to buckle. Therefore, stability is an important issue in the design of the pultruded FRP structural members. Many researchers have conducted related studies to publish the design method of FRP structures and recently, referred to the previous researches, pre-standard for LRFD of pultruded FRP structures is presented. In this paper, the accuracy and suitability of design equation for the local buckling strength of pultruded FRP I-shape compression members presented by ASCE are estimated. In the estimation, we compared the results obtained by design equation, closed-form solution, and experiments conducted by previous researches.
        4,000원
        10.
        2014.04 구독 인증기관·개인회원 무료
        Pultruded FRP can be regarded as an orthotropic material due to its manufacturing process that pull-out fibers impregnated with polymeric resin, which is suitable to produce structural member with unlimited lengths of reinforced polymer structural shapes with a various shape of cross-section. However, fiber distribution in the cross-section is not uniform because of the characteristics of pultrusion process. Therefore, random fiber distribution causes the difference of the modulus of elasticity throughout the cross-section. In this paper, closed-form local buckling analysis is conducted on the pultruded FRP I-shape compression members. The mechanical properties used to analytical investigations are obtained from the coupon test. The coupon test specimens are taken from the pultruded FRP I-shape member. Moreover, the local buckling tests of pultruded FRP I-shape members are conducted and test results are compared with the analytical results.
        11.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recent years, fiber reinforced polymer plastic composites are readily available in the construction industry. Fiber reinforced polymer composite has many advantages such as high specific strength and high specific stiffness, high corrosion resistance, light-weight, magnetic transparency, etc. In this paper, we present the result of investigation pertaining to the flexural behavior of flange strengthened I-shape pultruded fiber reinforced polymer plastic (PFRP) member using carbon fiber sheet (CFRP sheet). Test variable is consisted of the number of layers of strengthening CFRP sheet from 0 to 3. From the experimental results, flexural strengthening effect of flange strengthened I-shape PFRP member using CFRP sheet is evaluated and it was found that 2 layers of strengthening CFRP sheet are appropriate considering efficiency and workability.
        4,000원
        12.
        2013.04 구독 인증기관 무료, 개인회원 유료
        In recent years, fiber reinforced polymer plastic composites are readily available in the construction industry. Fiber reinforced polymer composite has many advantages such as high specific strength and stiffness, high corrosion resistance, light-weight, magnetic transparency, etc. In this paper, we present the result of investigation pertaining to the flexural behavior of flange strengthened I-shape pultruded fiber reinforced polymer plastic (PFRP) member using carbon fiber sheet (CFRP sheet). The number of layers of strengthening CFRP sheet, with a value of 0 to 3 was the test variables. From the experimental results, flextural strengthening effect of flange strengthened I-shape PFRP member using CFRP sheet is evaluated and it was found that 2 layers of strengthening CFRP sheet is appropriated considering efficiency and workability.
        3,000원
        13.
        2012.04 구독 인증기관·개인회원 무료
        Recently, environmental problems associated with the excessive use of fossil fuel are hot issue throughout the world. As an alternative energy resource, the importance of renewable energy is continuously rising. Especially, growth rate of photovoltaic energy generation is the best. In this paper, we present the result of investigations pertaining to the development of photovoltaic energy generation system installed on the sea. The system is consisted of photovoltaic energy generation panel, panel supporting structure, and floating structure. In the panel supporting structure, fiber reinforced polymer plastic (FRP) member manufactured by the pultrusion process is used. A floating type PV power generation structures shall be fabricated and this unit structure (I.e., module) is connected to extend to the appropriate size considering safety, workability, and economic efficiency. Developed floating type photovoltaic energy generation system is installed at fish farm in the south coast of Korea.
        14.
        2011.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        펄트루젼 FRP 구조용 부재는 많은 유용한 역학적, 물리적 성질 때문에 토목분야에서 구조부재의 매력적인 대체부 재로 고려될 수 있다. 그러나 펄트루젼 FRP는 탄성계수가 상대적으로 낮고, 부재의 단면이 복부와 플렌지 등의 얇 은 판요소로 구성되어 있기 때문에 압축재로 설계할 때 구조적인 안정성은 매우 중요한 고려사항이 된다. 따라서, 압축을 받는 구조용 부재의 설계를 위해, 판요소의 좌굴 및 후좌굴강도를 고려해야 한다. AISC/LRFD의 강구조 설 계기준에서는, 후좌굴강도에 추가적인 단면 내 일정하지 않은 응력분포의 영향을 형상계수(form factor)를 사용하여 고려하고 있다. 이 논문에서는 압축력을 받는 펄트루젼 FRP 구조용 부재의 형상계수를 해석적으로 연구하였으며, 형상계수를 설정하는 과정에 대하여 제안하였다.
        4,000원
        15.
        2013.10 서비스 종료(열람 제한)
        Recently, water surface floating solar power system are few appeared some companies in the country. However, it is the reality of most structures using steel and the problem’s occurred in durability for error of design issues and corrosion. In order to solve these problems, research is being conducted for various materials but performance verification is insufficient. In this study, in order to predict the structural behavior of water surface floating solar power structure and to confirm the safety, it tried to understand the mechanical properties of PFRP, synthetic wood instead of steel.