검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this research, reduced graphene oxide/polypyrrole (rGO/PPy) particles were synthesized and used to measure the amount of dopamine (DA) electrochemically. The obtained rGO/PPy particle was characterized by Fourier Transform Infrared Spectrophotometer (FTIR), UV–Visible Spectrophotometer (UV–Vis), and X-Ray Diffraction Diffractometry (XRD). To investigate the DA sensor performance, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to acquire electrochemical measurements of the sensor. Current values of 1.65 and 5.9 mA were observed in the CV at 0.2 mM and 1.2 mM concentrations of target molecule, respectively. Under optimized conditions, the linear calibration plots were found to exhibit significant sensitivity in the linear range of 0.2 and 1.2 mM, with a corresponding detection limit of 0.061 μM for DA. The results obtained were similar to the sensor results of DA made using precious metals. This work was a demonstration of the feasibility of high-sensitivity electrochemical analysis with conductive carbon materials without the use of precious metals. It was also observed that the cost-effective rGO/PPy exhibited a very high potential for DA detection.
        4,000원
        2.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This article presents recent advancements in the development of flexible piezoresistive strain sensors based on carbon nanotubes (CNTs)–polymer composites, with particular attention to their electromechanical properties. Various fabrication approaches and material preparation of CNTs–polymer composites with improved piezoresistive performance are introduced. Moreover, the article presents the working principle of the piezoresistive sensors in terms of the tunneling effect and disconnection-reconnection mechanism. The sensing performances of recently reported applications are studied. This work also reveals that the CNTs–polymer composites have great potential for flexible, skin-mountable, and wearable electronics applications. Finally, possible challenges for the future developments of CNTs–polymer composites are discussed.
        4,600원
        3.
        2018.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An imprinted potentiometric sensor was developed for direct and selective determination of gabapentin. Sensor is based on carbon paste electrode adapted by graphene oxide that is decorated with silver nanoparticles and mixed with molecularly imprinted polymers nanoparticles using gabapentin as a template molecule. The synthesized nanoparticles were characterized by Fourier transmission infrared spectroscopy, transmission electron microscopy and X-ray diffraction. Under optimal experimental conditions, the studied sensor exhibited high selectivity and sensitivity with LOD of 4.8×10–11 mol L–1. It provided a wide linearity range from 1×10–10 to 1×10–3 mol L–1and high stability for more than 3 mo. The sensor was effectively used for the determination of gabapentin in pharmaceutical tablets and spiked plasma samples.
        4,600원
        4.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbazole, EDOT 와 benzobisthiazole이 포함되어진 새로운 전도성 고분자의 합성 및 특징을 유기 분광학적인 방법으로 규명하였다. 포텐티오메트릭 이온 선택성 막 전극들은 넒은 감응범위(104~107)와, 시료의 혼탁도에 영향을 주지 않으며, 빠른 감응 시간과 소형화가 쉬운 이유로 병원, 환경과 산업 현장에서 널리 이용되고 있다. 이 전극의 막에는 강한 흡착과 열적인 안정성에서 뛰어난 상온에서 경화시킨 (RTV)-타입 실리콘 고무가 사용되었다. 불행하게도, 이 실리콘 고무 기반의 전극의 높은 막 저항(PVC 기반의 것과 비교하여 102~103배 더 높은 수치)이 응용에 제한이 되어 왔다. 여기에서 우리는 실리콘 고무 막에 전도성 고분자를 첨가 하여 막 저항이 줄어든 새로운 고체 전극을 구현하였다.
        4,000원
        5.
        2011.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Conducting polymer-coated multiwalled carbon nanotubes (MWCNTs) were prepared by template polymerization in order to enhance their gas sensitivity. This investigation of the conducting polymer phases that formed on the surface of the MWCNTs is based on field-emission scanning electron microscopy images. The thermal stability of the conducting polymer-coated MWCNTs was significantly improved by the high thermal stability of MWCNTs. The synergistic effects of the conducting polymer-coated MWCNTs improve the gas-sensing properties. MWCNTs coated with polyaniline uniformly show outstanding improvement in gas sensitivity to NH3 due to the synergistic combination of efficient adsorption of NH3 gas and variation in the conduction of electrons.
        4,000원
        8.
        2016.05 KCI 등재 서비스 종료(열람 제한)
        To realize a robot hand interacting like a human hand, there are many tactile sensors sensing normal force, shear force, torque, shape, roughness and temperature. This sensing signal is essential to manipulate object accurately with robot hand. In particular, slip sensors make manipulation more accurate and breakless to object. Up to now several slip sensors were developed and applied to robot hand. Many of them used complicate algorithm and signal processing with vibration data. In this paper, we developed novel principle slip sensor using separation layer. These two layers are moved from each other when slip occur. Developed sensor can sense slip signal by measuring this relative displacement between two layers. Also our principle makes slip signal decoupled from normal force and shear force without other sensors. The sensor was fabricated using the NBR(acrylo-nitrile butadiene rubber) and the Ecoflex as substrate and a paper as dielectric. To verify our sensor, slip experiment and normal force decoupling test were conducted.