검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13

        1.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this experimental work, a p-type c-Si (100) substrate with 8 × 8 × 2 mm dimension was taken for TiCN thin-film coating deposition. The whole deposition process was carried out by chemical vapor deposition (CVD) process. The Si substrate was placed within the CVD chamber at base pressure and process pressure of 0.75 and 500 mTorr, respectively, in the presence of TiO2 (99.99% pure) and C (99.99% pure) powder mixture. Later on, quantity of C powder was varied for different set experiments. The deposition of TiCN coating was carried out in the presence of N2– H2–TiCl4–CH3CN gas mixture and 600 ℃ of fixed temperature. The time for deposition was fixed for 90 min with 10 and 5 ℃ min− 1 heating and cooling rate, respectively. Later on, heat treatment process was carried out over these deposited TiCN samples to investigate the changing characteristics. The heat treatment was carried out at 800 ℃ within the CVD chamber in the absence of any gas flow rate. The morphological properties of heat-treated samples have been improved significantly, evidence is observed from SEM and AFM analyses. The structural analysis by XRD has been suggested, upgradation in crystallinity of the heat-treated film as it possessed with sharp and higher intensity peaks. Evidence has been found that the electrochemical properties are enhanced for heat-treated sample. Raman spectroscopy shows that the intensity of acoustic phonon modes predominates the optic phonon modes for untreated samples, whereas for heat-treated samples, opposite trends have been observed. However, significant degradation in mechanical properties for heat-treated sample has been observed compared to untreated sample.
        5,800원
        2.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A Cu-15Ag-5P filler metal (BCuP-5) is fabricated on a Ag substrate using a high-velocity oxygen fuel (HVOF) thermal spray process, followed by post-heat treatment (300oC for 1 h and 400oC for 1 h) of the HVOF coating layers to control its microstructure and mechanical properties. Additionally, the microstructure and mechanical properties are evaluated according to the post-heat treatment conditions. The porosity of the heat-treated coating layers are significantly reduced to less than half those of the as-sprayed coating layer, and the pore shape changes to a spherical shape. The constituent phases of the coating layers are Cu, Ag, and Cu-Ag-Cu3P eutectic, which is identical to the initial powder feedstock. A more uniform microstructure is obtained as the heat-treatment temperature increases. The hardness of the coating layer is 154.6 Hv (as-sprayed), 161.2 Hv (300oC for 1 h), and 167.0 Hv (400oC for 1 h), which increases with increasing heat-treatment temperature, and is 2.35 times higher than that of the conventional cast alloy. As a result of the pull-out test, loss or separation of the coating layer rarely occurs in the heat-treated coating layer.
        4,000원
        3.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of heat treatment and vacuum conditions on the textural properties and electrochemical performance of commercially available activated carbons (ACs) was investigated. The AC after post-heat treatment was characterized by nitrogen adsorption–desorption, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy measurements. The ACs treated under vacuum conditions exhibit a higher specific surface area and micropore surface area than those treated under nitrogen atmospheric pressure without significantly affecting the graphite structure of the AC. Under 800 °C temperature and vacuum conditions (AC-V800), the AC with the highest Brunauer– Emmett–Teller surface area of 1951.9 m2 g−1 (16.4% improvement relative to that of the original AC (1677.2 m2 g−1)) was obtained. This is attributed to the removal of oxygen-containing functional groups and volatile matters in the carbon by thermal treatment under vacuum conditions. Consequently, the electric double-layer capacitor using ACs treated under vacuum conditions (1 kPa) at 800 °C (AC-V800) shows considerably improved electrochemical performance in terms of higher specific capacitance and better cycling stability at a high working voltage (3.1 V), compared to the nitrogen-treated and commercial ACs.
        4,300원
        4.
        2020.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        For surface hardening of a continuous casting mold component, a fundamental metallurgical investigation on dissimilar laser clads (Cu–NiCrBSi) is performed. In particular, variation behavior of microstructures and mechanical properties (hardness and wear resistance) of dissimilar clads during long-term service is clarified by performing high-temperature postclad heat treatment (temperature range: 500 ~ 1,000 ℃ and isothermal holding time: 20 ~ 500 min). The microstructures of clad metals (as-clads) consist of fine dendrite morphologies and severe microsegregations of the alloying elements (Cr and Si); substrate material (Cu) is clearly confirmed. During the post-clad heat treatment, the microsegregations are totally homogenized, and secondary phases (Cr-based borides and carbides) precipitated during the short-term heat treatment are also almost dissolved, especially at the heat treatment conditions of 950 ℃ for 500 min. Owing to these microstructural homogenization behaviors, an opposite tendency of the surface mechanical properties can be confirmed. In other words, the wear resistance (wear rate) improves from 4.1 × 10−2 mm3/Nm (as-clad condition) to 1.4 × 10-2 mm3/Nm (heat-treated at 950 ℃ for 500 min), whereas the hardness decreases from 453 HV (as-clad condition) to 142 HV (heat-treated at 950 ℃ for 500 min).
        4,000원
        5.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, Al-Si-Mg alloys are additively manufactured using a selective laser melting (SLM) process from AlSi10Mg powders prepared from a gas-atomization process. The processing parameters such as laser scan speed and laser power are investigated for 3D printing of Al-Si-Mg alloys. The laser scan speeds vary from 100 to 2000 mm/ s at the laser power of 180 and 270W, respectively, to achieve optimized densification of the Al-Si-Mg alloy. It is observed that the relative density of the Al-Si-Mg alloy reaches a peak value of 99% at 1600 mm/s for 180W and at 2000 mm/s for 270W. The surface morphologies of the both Al-Si-Mg alloy samples at these conditions show significantly reduced porosities compared to those of other samples. The increase in hardness of as-built Al-Si-Mg alloy with increasing scan speed and laser power is analyzed due to high relative density. Furthermore, it was found that cooling conditions after the heat-treatment for homogenization results in the change of dispersion status of Si phases in the Al-Si matrix but also affects tensile behaviors of Al-Si-Mg alloys. These results indicate that combination between SLM processing parameters and post-heat treatment should be considered a key factor to achieve optimized Al-Si alloy performance.
        4,000원
        7.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Additive manufacturing by electron beam melting is an affordable process for fabricating near net shaped parts of titanium and its alloys. 3D additive-manufactured parts have various kinds of voids, lack of fusion, etc., and they may affect crack initiation and propagation. Post process is necessary to eliminate or minimize these defects. Hot isostatic pressing (HIP) is the main method, which is expensive. The objective of this paper is to achieve an optimum and simple post heat treatment process without the HIP process. Various post heat treatments are conducted for the 3Dprinted Ti-6Al-4V specimen below and above the beta transus temperature (996oC). The as-fabricated EBM Ti-6Al-4V alloy has an α‘-martensite structure and transforms into the α+β duplex phase during the post heat treatment. The fatigue strength of the as-fabricated specimen is 400 MPa. The post heat treatment at 1000oC/30 min/AC increases the fatigue strength to 420 MPa. By post heat treatment, the interior pore size and the pore volume fraction are reduced and this can increase the fatigue limit.
        4,000원
        9.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, SM45C-STKM13B hollow shaft of different thickness was joined by friction welding. After friction welding, we treated to specimen of annealing(post-weld heat treatment). The specimens were tested as-welded and post-weld heat treatment(PWHT). The mechanical properties including tensile test and vickers micro-hardness were examined. And then, the mechanical properties were compared for as-welded and PWHT in SM45C to STKM13B. Microstructure of joining part were examined in the weld interface and weld region and heat affected zone and base metal of weld parts.
        4,000원
        10.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The micron-sized indium zinc tin oxide (IZTO) particles were prepared by spray pyrolysis from aqueous precursor solution for indium, zinc, and tin and organic additives such as citric acid (CA) and ethylene glycol (EG) were added to aqueous precursor solution for indium, zinc, and tin. The obtained IZTO particles prepared by spray pyrolysis from the aqueous solution without organic additives had spherical and filled morphologies, whereas the IZTO particles obtained with organic additives had more hollow and porous morphologies. The micron-sized IZTO particles with organic additives were changed fully to nano-sized IZTO particles, whereas the micron-sized IZTO particles without organic additives were not changed fully to nano-sized IZTO particle after post-treatment at 700 °C for 2 hours and wet-ball milling for 24 hours. Surface resistances of micron-sized IZTO’s before post-heat treatment and wet-ball milling were much higher than those of nano-sized IZTO’s after post-heat treatment and wet-ball milling. From IZTO with composition of 80 wt. % In2O3, 10 wt. % ZnO, and 10 wt. % SnO2 which showed a smallest surface resistance IZTO after post-heat treatment and wet-ball milling, thin films were deposited on glass substrates by pulsed DC magnetron sputtering, and the electrical and optical properties were investigated.
        4,000원
        11.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, commercially available pitch-based carbon fibers of general grade were post-heat-treated using a boxtype high temperature furnace at 1800℃, 2000˚, 2200℃, and 2400℃, respectively. The fundamental characteristics of each heat-treated carbon fibers were investigated in terms of chemical composition, morphology, thermal stability, X-ray diffraction, single filament tensile test, and electrical resistivity. The result showed that the fiber properties were significantly influenced by the post-heat-treatment, indicating the greater effect with increasing treatment temperature. The carbon contents, thermal stability, and tensile properties of the carbon fibers used here were further increased by the post-heat-treatment, whereas the d-spacing between graphene layers and the electrical resistivity were reduced with increasing post-heat-treatment temperature.
        4,000원
        12.
        2005.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of post-heat treatment on the coating characteristics and the fatigue strength of the gas flame thermally sprayed Stellite alloy coatings on carbon steel were investigated. The fatigue fracture surfaces of the heat treated samples were observed using SEM (Scanning Electron Microscopy). For as-sprayed samples, there was considerable scattering in the fatigue life due to the presence of the pores in the coating. After the post-heat treatment to improve the microstructural characteristics of the coating layer, the fatigue strength of the specimens was greatly improved, increasing with increasing the coating thickness. For the specimens with the 0.3mm and 0.5mm thick coating, the fatigue cracks originated in the substrate region just below the interface. On the contrary, for the specimens with the 1.0mm thick coating, they nucleated at the pore within the coating, and the fatigue strength was 2.6 times higher than that of the substrate due to the high fatigue resistance of the coating.
        4,000원