Background: This study evaluated the effectiveness of upper thoracic manipulation (UTM) and proprioceptive training versus proprioceptive training alone on forward head posture (FHP) and cervicocephalic joint position sense (CJPS) in asymptomatic university students during a short interval of time.
Objectives: To evaluate whether the suggested combination would provide greater benefit, and be superior to proprioceptive training alone in improving proprioceptive acuity and head posture. Design: A single-blind randomized controlled trial.
Methods: Thirty-three university student volunteers with asymptomatic FHP were recruited. Subjects were randomly assigned to a manipulation group (n=16) receiving UTM combined with proprioceptive training or a proprioception group (n=17) receiving proprioceptive training only. The intervention period lasted 5 weeks in total, and consisted of one 15 to 20-minute session per week. FHP and CJPS were assessed before and after the intervention.
Results: A significant pre- to post-intervention decrease in FHP and joint position error was identified in both groups (P<.05). Subjects in the manipulation group demonstrated greater improvements in CJPS and head posture compared to the proprioception group (P<.05). Conclusion: These findings support employing either intervention for treating asymptomatic students with FHP. However, the addition of UTM to proprioceptive training was more effective than proprioceptive training alone in reducing joint position errors and improving head posture.
This study evaluated and compared the effectiveness on upper motor extremity function between proprioceptive neuromuscular facilitation which has been frequently used in clinical practice, and action observation training in terms of improving upper motor extremity function. A study with a single-subject design (A-B-C-A') was conducted with a patient who was diagnosed with left hemiplegia. A repeated-measure analysis was conducted to assess results of the Wolf Motor Function Test (WMFT), Box and Block Test (BBT), and grip and pinch strength test performed daily in the study for 4 weeks. The results of the analysis indicated that the WMFT score, BBT score, grip strength, and pinch strength were improved from 29.60 to 39 (24.10%), from 1.67 to 4.93 each (EA) (66.22%), from 2.06 to 2.66 libras (lbs) (22.61%), and from 1.57 to 1.93 lbs (18.94%), respectively, from the baseline period to treatment period B. The values were improved from 29.60 to 42.20 (29.86%), from 1.67 to 7 EA (76.21%), from 2.06 to 3.47 lbs (40.57%), and from 1.57 to 1.67 lbs (6.12%), respectively, from the baseline period to treatment period C. From treatment period B to treatment period C, the WMFT score, BBT score, and grip strength were improved from 39 to 42.20 (7.58%), from 4.93 to 7 EA (29.56%), and from 2.66 to 3.47 lbs (23.20%), respectively, but pinch strength was decreased from 1.93 to 1.67 lbs (15.83%). In conclusion, proprioceptive neuromuscular facilitation and action observation training both have positive effects on upper extremity motor function. However, we suggest that the posttreatment effect of action observation training was better than that of proprioceptive neuromuscular facilitation.
The purpose of this study was to analysis of the effect of proprioceptor training and vestibular organ training for balance ability. The subjects was consist of two different subjects group, proprioceptor training group and vestibular organ training group. Proprioceptor training group consisted of 10 subjects and vestibular organ training group consisted of 10 subjects. Training was performed 3 times per week, 30 minutes per day, for 3 weeks. Balance ability analysis was performed using Romberg's one leg standing test and BT4 when opened eyes and closed eyes. The analysis results were as follows. There was no significant differences in balance after the training in both groups when they opened their eyes(p<.05). But there was significant differences in balance after the training in both groups when they closed their eyes(p<.05). And there was no significant difference in balance after the training between the proprioceptor training group and the vestibular organ training group when they closed their eyes(p<.05). Given the above results, proprioceptor training and vestibular organ training enhanced balance but there was no significant difference between the two methods.
This study is aimed at investigating the influence of different quantitative knowledge of results on the measurement error during lumbar proprioceptive sensation training. Twenty-eight healthy adult men participated and subjects were randomly assigned into four different feedback groups(100% relative frequency with an angle feedback, 50% relative frequency with an angle feedback, 100% relative frequency with a length feedback, 50% relative frequency with a length feedback). An electrogoniometer was used to determine performance error in an angle, and the Schober test with measurement tape was used to determine performance error in a length. Each subject was asked to maintain an upright position with both eyes closed and both upper limbs stabilized on their pelvis. Lumbar vertebrae flexion was maintained at for three seconds. Different verbal knowledge of results was provided in four groups. After lumbar flexion was performed, knowledge of results was offered immediately. The resting period between the sessions per block was five seconds. Training consisted of 6 blocks, 10 sessions per one block, with a resting period of one minute. A resting period of five minutes was provided between 3 blocks and 4 blocks. A retention test was performed between 10 minutes and 24 hours later following the training block without providing knowledge of results. To determine the training effects, a two-way analysis of variance and a one-way analysis of variance were used with SPSS Ver. 10.0. A level of significance was set at .05. A significant block effect was shown for the acquisition phase (p<.05), and a significant feedback effect was shown in the immediate retention phase (p>.05). There was a significant feedback effect in the delayed retention phase (p<.05), and a significant block effect in the first acquisition phase and the last retention phase (p<.05). In conclusion, it is determined that a 50% relative frequency with a length feedback is the most efficient feedback among different feedback types.