검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,324

        61.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, considerable attention has been given to nickel-based superalloys used in additive manufacturing. However, additive manufacturing is limited by a slow build rate in obtaining optimal densities. In this study, optimal volumetric energy density (VED) was calculated using optimal process parameters of IN718 provided by additive manufacturing of laser powder-bed fusion. The laser power and scan speed were controlled using the same ratio to maintain the optimal VED and achieve a fast build rate. Cube samples were manufactured using seven process parameters, including an optimal process parameter. Analysis was conducted based on changes in density and melt-pool morphology. At a low laser power and scan speed, the energy applied to the powder bed was proportional to and not . At a high laser power and scan speed, a curved track was formed due to Plateau-Rayleigh instability. However, a wide melt-pool shape and continuous track were formed, which did not significantly affect the density. We were able to verify the validity of the VED formula and succeeded in achieving a 75% higher build rate than that of the optimal parameter, with a slight decrease in density and hardness.
        4,000원
        62.
        2022.10 구독 인증기관·개인회원 무료
        n this research, the dose rate was measured using backpack-type scan survey device at 4 sites on Jeju Island, and the radioactivity ratio for each nuclide was evaluated using an high-purity germanium (HPGe) detector. As a result of measuring the dose rate with a backpack-type scan survey device, the average dose rate was the lowest in the measurement site 3 at 0.049 Sv/h, and the highest in the measurement site 1 at 0.066 Sv/h. The average dose rate of the 4 sites on Jeju Island was 0.056 Sv/h, and the dose rate on Jeju Island was lower than that of other regions. The data acquired by scan survey were interpreted using classed post and gridding function of surfer program. The radioactivity ratio of each nuclide in the gamma spectrum measured by the HPGe detector was the highest for K-40 with an average of 87.62%, and the lowest for Pb-214 with an average of 0.63%. In the case of the Jeju Island site, Cs-137 was detected, and the average radioactivity ratio of Cs-137 was 3.27%, which was the background level. The results of this research can be used as basic data on the radioactivity ratio for each nuclide and dose rate at the Jeju Island site. Further studies on the assessment of dose rates and radioactivity ratios in other regions are needed.
        63.
        2022.10 구독 인증기관·개인회원 무료
        In emergency situations such as nuclear accidents or terrorism, radioactive and nuclear materials can be released by some environmental reasons such as the atmosphere and underground water. To secure the safety of human beings and to respond appropriately emergency situation, it is required to designate high and low dose rate regions in the early stages by analyzing the location and radioactivity of sources through environmental radiation measurement. This research team has developed a small gamma probe which is featured by its geometrical accessibility and higher radiation sensitivity than other drone detectors. A plastic scintillator and Silicon Photomultiplier (SiPM) were applied to the probe to optimize the wireless measurement condition. SiPM has a higher gain (higher than 106) and lower operating voltage (less than 30 V) compared to a general photodiode. However, the electronic components in the SiPM are sensitively affected by temperature, which causes the performance degradation of the SiPM. As the SiPM temperature increases, the breakdown voltage (VBD) of the SiPM also increases, so the gain must be maintained by applying the appropriate VBD. Therefore, when the SiPM temperature increases while the VBD is fixed, the gain decreases. Thus, the signal does not exceed the threshold voltage (VTH) and the overall count is reduced. In general, the optimal gain is maintained by cooling the SiPM or through a temperature compensation circuit. However, in the developed system, the hardware correction method such as cooling or temperature compensation circuit cannot be applied. In this study, it was confirmed that the count decreased by up to 20% according to the increase in the temperature of the SiPM when the probe was operated at room temperature (26°C). We propose methods to calibrate the total count without cooling device or compensation circuit. After operating the probe at room temperature, the first measured count is set as the reference value, and the correction factor is derived using the tendency of the count to decrease as the temperature increases. In addition, since this probe is used for environmental radiation monitoring, periodic measurements are more suitable than continuous measurements. Therefore, the temperature of the probe can be maintained by adding a power saving interval to the operation sequence of the probe. These two methods use the operation sequence and measurement data, respectively. Thus, it is expected to be the most effective method for the current system where the temperature compensation through hardware is not possible.
        64.
        2022.10 구독 인증기관·개인회원 무료
        Dose-rate monitoring instruments are indispensable to protect workers from the potential risk of radiation exposure, and are commonly calibrated in terms of the ambient dose equivalent (H*(10)), an operational quantity that is widely used for area monitoring. Plastic scintillation detectors are ideal equipment for dosimetry because of their advantages of low cost and tissue equivalence. However, these detectors are rarely used owing to the characteristics caused by low-atomic-number elements, such as low interaction coefficients and poor gamma-ray spectroscopy. In this study, we calculated the G(E) function to utilize a plastic scintillation detector in spectroscopic dosimetry applications. Numerous spectra with arbitrary energies of gamma rays and their H*(10) were calculated using Monte Carlo simulations and were used to obtain the G(E) function. We acquired three different types of G(E) functions using the least-square and first-order methods. The performances of the G(E) functions were compared with one another, including the conventional total counting method. The performance was evaluated using 133Ba, 137Cs, 152Eu, and 60Co radioisotopes in terms of the mean absolute percentage error between the predicted and true H*(10) values. In addition, we confirmed that the dose-rate prediction errors were within acceptable uncertainty ranges and that the energy responses to 137Cs of the G(E) function satisfied the criteria recommended by the International Commission.
        65.
        2022.10 구독 인증기관·개인회원 무료
        Radiological characterization is important in decommissioning and dismantling of nuclear facilities, in order to assess the radioactivity concentration, classify the wastes, and secure workers’ safety. The Some components such as Reactor Pressure Vessel (RPV) in nuclear facilities has dose rate higher than Sv/hr, thus in-situ gamma spectroscopy systems suffer from a very high count rate which causes energy resolution degradation, photo-peak shift, and count loss by pile-up and dead-time. The system must be operated in a very high count rate, in order to measure spectra precisely and to quantify radionuclide contents. In order to apply in-situ measurement in high radiation dose rate environment, the sensor, front-end electronics, and data acquisition (DAQ) should be carefully selected and designed as well as precise design of collimators and radiation shield. In this paper, the components of the detector system were selected and performance was evaluated in a high count rate before design the collimator and shield. A LaBr3 coupled with a PMT having short decay time constant (16 nsec) was selected for high count rate application, and two different amplifiers (a conventional charge sensitive preamplifier with 50 usec decay time constant, and wide-band voltage amplifier) were tested. As DAQs, DT5781 (14 bit, 100 MS/s, CAEN) of Pulse Height Analysis (PHA) which is conventionally used signal processing method in the gamma spectroscopy, and DT5730 (14 bit, 500MS/s, CAEN) of Pulse Shape Discrimination (PSD) which is similar to Charge to Digital Convertor (QDC) were used. The number of photons incident to the detector was varied by changing the detector-source distance with Certificate Radiation Material (CRM), and compared to the output count rate. The count rate capability, and energy resolution with different amplifier and DAQ was evaluated. Additionally, the performance of DAQs in extremely high count rate was evaluated with signal data generated by the emulator which can simulate the detector signal waveforms fed into the DAQ based on the measured spectrum.
        66.
        2022.10 구독 인증기관·개인회원 무료
        Especially for near-surface repository for disposal of the low- and intermediate-level radioactive waste, safety assessment in case of inadvertent human intrusion should be handled seriously. This is because this type of incident will possibly give rise to high acute, not chronic exposure dose even though its occurrence of likelihood could higher than rather deeper geological repository for disposal of high-level radioactive waste over long time span after closure of the repository. Recently well drilling scenario for the pumping groundwater from the aquifer near the repository, among other possible inadvertent human intrusion incidents, has been popularly evaluated for the worst case due to its relatively high possibility of occurrence in parallel with normal scenarios for the nuclide transport for post-closure safety assessment of the repository. Movement of nuclide plume both in the confined and unconfined aquifer under and over a radioactive waste repository is of importance especially around an extracting well. Through this study a simple comment regarding quantification between a pumping rate from the well drilled into the aquifer as well as quantification of the plume size flowing around the well is presented. Drawdown of the well which is the change of water level of the upper water surface of the aquifer due to well pumping makes a cone of depression. And capture zone in the aquifer which is formed around the well, by which the groundwater is removed out, is the groundwater volume or area in the aquifer that is considered to contribute the extraction of the well by pumping. Usually this capture zone does not encompass the entire aquifer thickness for the partially penetrating well, which means that not all the portion of flowing groundwater through the aquifer is drawn by the well. And this capture zone does not need to coincide with the volume of the cone. Furthermore, all the nuclide plume volume is not necessarily and completely mixed with the groundwater flowing the entire aquifer. Therefore, a strategical approach might be required to grasp the aquifer portion and the plume size influenced by pumping to evaluate rather accurate radiological consequences due to the well scenario avoiding overestimation and meaningless conservatism as well, which is especially very common in the mass balance modeling e.g., by GoldSim under assumption that all the groundwater volume from the aquifer near the well extracted by the well. Although the capture zone around the well should be determined both by use of global/local groundwater flow model in the aquifer but a simple analytical model could be sought. Capture zone analysis has been widely seen in the area of the design of groundwater remediation system. If for safety assessment of the subsurface repository the plume behavior in the aquifer under the repository should be well characterized and correctly modeled, then the current study is expected to be more or less helpful to develop a specific mass balance model for nuclide transport and groundwater flow for assessment of an abnormal well drilling scenario near the repository.
        72.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Snow removal is one of the principal components in winter road maintenance. The two commonly used methods are mechanical removal and chemical removal. Mechanical removal pushes accumulated snow off the roadway using snow plows. Chemical removal involves the application of chemicals such as NaCl2 (salt), CaCl2, MgCl2, etc., to liquefy the snow on the road. However, chemicals are known to pose negative effects on the environment and road infrastructure, so it is emphasized that only an appropriate amount of chemicals should be applied. Hence, in this study, extensive field experiments were performed to determine the appropriate amounts of chemicals required for each road surface temperature group. METHODS : The experiments were carried out at a road weather proving ground, located in Yeoncheon where road weather (including snowfall) can be artificially created. Four surface temperature groups were predetermined, according to the characteristics of de-icing chemicals on snow. For each temperature group, four different amounts of pre-wetted salt were applied to find the optimal rate for each group. RESULTS : As a consequence, the amount of recommended chemicals for each temperature group was found to be an average of 27.2g/ m2, which is 7.7g/m2 (22%) lower than the corresponding amount presented in the current Korean guidelines. CONCLUSIONS : Applying the results of this study to snow and ice control tasks enables the minimization of the negative impacts of de-icing chemicals, but still maintaining road safety and mobility.
        4,000원
        75.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the cooling performance change according to the arrangement of the fin-tube heat exchanger using a single tube and the cooling performance change according to the air flow rate were studied. The arrangement of basic heat exchanger was set to 4 columns and 4 rows, and the performance change was studied while changing the columns and rows. In addition, the performance change was investigated by changing the air flow rate of the basic heat exchanger.
        4,500원
        76.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        지중관수에 의한 밭작물의 농업용수는 30%이상 절감되고 가용용수량도 지표면 관수에 비해 2배 이상의 효과가 있는 것으로 알려져 있다. 이것은 수분을 지중에 공급하므로 증발산으로 인한 손실을 줄일 뿐만 아니라 지중의 확산 체적을 넓혀 지표면에 비해 수분공급 효과를 높일 수 있기 때문이다. 뿐만 아니라 관수 노동력도 절감되므로 최근 지중관수 장치의 보급이 확산되고 있는 추세이다. 그러나 우리나라는 아직까지 지중관수 장치가 개발되지 않아 농민들은 수입품 자재에 의존하고 있는 실정이다. 지중관수 장치는 3가지 중요한 기능을 가지고 있다. 첫 번째는 공급압력 100-400 kPa 사이에 유량 오차가 5-10% 범위에서 균등해야 하고, 두 번째는 토양속에서 수분을 공급하므로 뿌리가 토출구 속으로 들어가 내부의 관수구가 막히지 않아야 한다. 세 번째는 용수 공급을 중단했을 때, 관수구에서 누수가 되지 않도록 설계⋅제작되어야 한다. 또한 지중에 수분을 공급하므로 지표면 관수와 달리 이상 유무에 대해 확인하기 어려운 점이 있기 때문에 장치의 신뢰성이 높아야 한다. 따라서 지중관수 장치의 핵심은 3가지 기능을 가진 드리퍼의 개발이 우선되어야 가능하다. 유량의 균등성을 유지하는 것은 드리퍼 내부에 압력보상 기술(pressure compensation technology)에 의해 좌우된다. 드리퍼는 outer, lower insert 및 upper insert의 구성요소로 이루어져 있고, 내부에 압력조정 기능 즉, 밸브의 역할을 하는 실리콘이 내장되어 있다. 드리퍼가 유량 균등성, 뿌리 막힘 및 역류방지 기능을 수행하기 위해서 약 10가지의 설계변수를 고려해야 한다. 특히 드리퍼에서 유량이 가장 먼저 통과하는 outer의 원추 높이와 실리콘 경도는 유량 균등성에 미치는 영향이 가장 클 뿐만 아니라 공급유량의 중지 시에는 역류방지의 기능도 동시에 하게 된다. 본 연구에서 개발된 지중관수용 드리퍼의 유량 균등성은 95%를 목표로 하였다. 또한 국내서 개발한 4종의 개발품과 2종의 해외 제품을 대상으로 뿌리 침투 장면도 확인하였고, 역류 방지기능에 대해서는 관수중단점 압력 29 kPa에서 관수가 중단되는 것으로 나타나 성능이 우수한 것으로 판단되었다.
        4,000원
        77.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        국내 주요 사회기반시설의 70% 이상이 철근콘크리트 구조물로 구성되어 있다. 최근 다양한 사회적ㆍ환경적 변화로 인한 내하력 저하 및 노후화 진행이 발생됨에 따라 섬유강화 복합소재(FRP)를 활용한 유지보수 수요 및 비용이 급격히 증가되 고 있다. 이에 따라 보다 경제적이고 효율적으로 FRP 보강재를 활용함에 있어서 성능을 예측할 수 있는 방법이 요구된다. 본 연구에서는 CFRPㆍBFRP 복합재료를 실험 대상으로 선정하고 성능을 결정하는 주요 인자인 섬유/수지 함침률을 54.3%, 43.9%, 39% 3가지로 분류하여 성능을 평가하고 이를 활용하여 FRP의 성능을 예측할 수 있는 모델식을 개발하고자 하였다. 매개변수에 따른 성능평가 결과, 두 섬유 모두 함침률이 낮아질수록 재료성능 또한 감소되는 것이 확인되었으며, 특히 BFRP의 경우 39%의 함침률에서 감소폭이 CFRP 대비 더 큰 것으로 나타났다. 실험 결과와 기존의 예측 모델식과의 성능 비교를 통해 약 15%의 오 차가 나타나는 것을 확인하였으며, 이에 따른 보정계수를 산정하여 예측 모델식을 재정립하였다.
        4,200원
        78.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The rate of industrial accident reduction is slowing down as the attention of the Ministry of Employment and Labor and related agencies on risk assessment systems decreased. this paper focuses on weakness of legal system for the risk assessment in recent years. A survey was conducted to identify the status and condition of the risk assessment system applying on small and medium-sized manufacturing companies. A set of questionnaires is designed to reflect various perspectives of the companies regarding the problems and solutions of the system. The results refer that differentiated instructions and support systems in response to the actual conditions of the companies are mandatory to reinforce the efficiency of risk assessment system.
        4,000원
        79.
        2022.05 구독 인증기관·개인회원 무료
        RADTRAN is a code that assesses the radiation risk of radioactive material transportation. RADTRAN assumes that the package is a point source or a line source regardless of package type and corrects the external dose rate using a shape factor which depends on the critical dimension of the package. However, the external dose rate calculated using a shape factor may be different from the actual external dose rate. Therefore, it is necessary to analyze the effect of the shape factor on the external dose rate. In this study, the effect of the shape factor on the external dose rate in RADTRAN was analyzed by comparison with MCNP. This study analyzed change in external dose rate depending on the distance from the package and the critical dimension. The distance from the package was in the range of 1–800 m. The shape of the package was assumed to be cylindrical with a radius of 1 m, and the critical dimensions of the package were assumed to be 2, 4, and 8 m. Attenuation and build-up in the air were not considered to consider only the effect on the shape factor. When simulating the exposure situation using MCNP, the package was assumed to be a volume source, and flux by distance from the package was calculated using F5 tally. The dose rate at 1 m from the package was normalized to 2 mSv·hr−1. As a result of the analysis, the external dose rates of the package were higher in RADTRAN than in MCNP. For the critical dimension of 2, 4, and 8 m, when the distance from package is 1–10 m, the RADTRAN was 1.83, 4.08, and 5.27 times higher on average than MCNP, respectively. And when the distance from the package was 10–100 m and 100–800 m, RADTRAN was 1.10, 2.02, 3.01 times and 1.04, 1.92, 2.43 times higher than MCNP, respectively. It was found that the larger the distance from the package is and the smaller the critical dimension of the package is, the less conservatively RADTRAN assessed. It is because the shape of the package gets closer to the point source as the distance from the package increases, and the shape factor decreases as the critical dimension of the package decreases. The result of this study can be used as the basis for radiation risk assessment when transporting radioactive materials.
        80.
        2022.05 구독 인증기관·개인회원 무료
        The International Atomic Energy Agency recommends the deep geological disposal system as one of the disposal methods for high-level radioactive waste (HLW), such as spent nuclear fuel. The deep geological disposal system disposes of HLW in a deep and stable geological formation to isolate the HLW from the human biosphere and restrict the inflow of radionuclides into the ecosystem. It mainly consists of an engineered barrier and a natural barrier. Safety evaluation using a numerical model has been performed primarily to evaluate the buffer’s long-term stability. However, although the gas generation rate input for long-term stability evaluation is the critical factor that has the most significant influence on the long-term hydraulic-mechanical behavior of the buffer, in-depth research and experimental data are lacking. In this study, the gas generation rate on the interface between the disposal canister and the buffer material, a component of the engineered barrier, was mainly studied. Gas can be generated between the disposal canister and the buffer material due to various causes such as anaerobic corrosion of the disposal canister metal, organic matter decomposition, radiation decomposition, and steam generation due to high temperature. The generation of gas in such a disposal environment increases the pore gas pressure in the buffer and causes internal cracks. The occurred cracks increase the intrinsic permeability of the buffer, which leads to a decrease in the primary performance of the buffer. For this reason, it is essential to apply the appropriate gas generation rate according to the disposal condition and buffer material for accurate long-term stability analysis. Therefore, the theoretical models regarding the estimation of gas generation were summarized through a literature study. The amount of gas generated was estimated according to the disposal environment and material of the disposal canister. It is expected that estimated values might be used to estimate the long-term stability analysis of buffer performance according to the disposal condition.
        1 2 3 4 5