In order to present a predictive drift model, Jeju National University's training ship was tested for about 11 hours and 40 minutes, and 81 samples that selected one of the entire samples at ten-minute intervals were subjected to regression analysis after verifying outliers and influence points. In the outlier and influence point analysis, although there is a part where the wind direction exceeds 1 in the DFBETAS (difference in Betas) value, the CV (cumulative variable) value is 6%, close to 1. Therefore, it was judged that there would be no problem in conducting multiple regression analyses on samples. The standard regression coefficient showed how much current and wind affect the dependent variable. It showed that current speed and direction were the most important variables for drift speed and direction, with values of 47.1% and 58.1%, respectively. The analysis showed that the statistical values indicated the fit of the model at the significance level of 0.05 for multiple regression analysis. The multiple correlation coefficients indicating the degree of influence on the dependent variable were 83.2% and 89.0%, respectively. The determination of coefficients were 69.3% and 79.3%, and the adjusted determination of coefficients were 67.6% and 78.3%, respectively. In this study, a more quantitative prediction model will be presented because it is performed after identifying outliers and influence points of sample data before multiple regression analysis. Therefore, many studies will be active in the future by combining them.
The purpose of this study is to analyse the geological and terrain factors of the part of Choogaryeong Rift Valley between Yeoncheon and Cheolwon. The results are: (1) The geology is composed of three kinds of rocks: Yeoncheon System, Jurassic volcanic rocks and Quaternary Jeongok basalt. (2) It seems to be that there are basaltic layers of 7-8m thickness below the rift valley by the analysis of resistivity survey. (3) The topography of the region could be divided into two characteristic parts: the rift valley and surrounding mountainous area. (4) The site of the area is important because it is the boundary where two kinds of different geologic factors contact. (5) The situation of the area is important because of its central location between Seoul and Wonsan.
This study focused to reveal mineralogical and petrochemical properties and the stratigraphy of the volcanic rocks along the downstream of the Hantan River in Choongaryong Rift Valley. The geological sequences of this area are as follows: The basement of this area consists of Precambrian metasedimentary rocks of the Yeoncheon System. The Biotite Granodiorite of Jurassic age intruded into the Yeoncheon System in the eastern side of the area. Several small exposures of the basalt of post-Jurassic age, which was maned as $quot;Tongjae Basalt$quot;occur dispersely along the west slope of the valley. A conglomerate formation overlay the eroded surface of Tongjae Basalt and contains rounded and angular pebbles and is unconformable overlain by Lapilli Lithic Tuff. A basalt outcrop exposed as small an exposure near Jangtanri creek and intruded the Lithic Tuff, maned as : Jangtanri Basalt.$quot; Granite porphyry dikes intruded into the Lithic Tuff in Tongjae area. An Alkali Loivine Basalt of the Cenozoic Era with 3∼11 different eruptions flowed on the surfaces of the abouve mentioned Precambian metasedimentary rocks, Biotite Granodiorite, Lithic Tuff and Unconsolidated in the valley and formed marrow plateaus. The Alkali Basalt consists mainly of olivine, diopside, hypersthene and labradorite, and is called in this study as $quot;Jeongog Basalt$quot;. the age of the last flow is estimated as late Pleistocene or early Holocene.
맨틀 불균질성은 지구 내부의 휘발성 성분의 분포 및 순환과 밀접한 관련이 있으며, 맨틀에서 휘발성 물질의 거동은 규산염암의 유변학적 특성에도 큰 영향을 미친다. 이와 같은 상부맨틀의 물리화학적 특성은 미 구조와 유체포유물의 형태로 맨틀 포획암에 기록될 수 있다. 본 논문에서는 미국 리오 그란데 리프트 지역에 서 산출되는 페리도타이트 포획암의 미구조와 유체포유물의 특성과 관련된 이전 연구결과들을 요약 및 리뷰 하였으며, 이를 통해 이 지역의 상부맨틀의 진화과정과 불균질성에 대해 이해하고자 한다. 리오 그란데 리프 트에서 맨틀 포획암이 산출되는 지역은 크게 리프트 중심부인 리프트 축(rift axis) 지역(EB: Elephant Butte, KB: Kilbourne Hole)과 리프트 연변부인 리프트 측면(rift flank) 지역(AD: Adam’s Diggings)으로 나눠진다. 전자(EB 및 KB 페리도타이트)의 경우 응력이 낮고 물함량이 적은 조건에서 형성되는 type-A 격자선호방향 이 보고되었고, 후자(AD 페리도타이트)의 경우 응력이 낮고 물함량이 많은 조건에서 형성되는 type-C 격자선 호방향이 보고된 바 있다. 특히, AD 페리도타이트의 경우 초기(type-1: CO2-N2) 및 후기(type-2: CO2-H2O)와 같은 최소 두번의 유체 침투 사건이 사방휘석 내에 기록되어있다. 이와 같은 미구조 및 유체포유물에 기록된 상부맨틀의 불균질성은 북미 판과 Farallon 판 사이의 상호작용에 기인한 것으로 추정된다.
화강암 석산에서 1번 면, 2번 면 및 3번 면으로 알려진 세 직교하는 분할면의 강도 특성을 검토하였다. R, G 및 H 공시체는 거창 및 합천 지역에서 분포하는 쥬라기 화강암류의 블럭 샘플로부터 획득하였다. 이들 세 공시체의 장축의 방향은 세 면 각각에 수직이다. 세 면에 대한 판별에 유용한 주요 사항은 다음 과 같다. 첫째, R, G 및 H 공시체의 일축압축강도와 관련된 세 그래프의 스케일링 특성을 보여 주는 도면을 작성하였다. 강도의 증가에 따라 세 공시체의 그래프는 H < G < R의 순으로 배열한다. 공시체 내부의 조직 균일도를 지시하는 세 공시체에 대한 그래프의 경사각을 비교하였다. H 공시체(θH, 24.0°~37.3°)에 대한 상기 한 각이 세 공시체 중에서 가장 낮다. 둘째, 두 공시체의 평균압축강도의 조합을 나타내는 RG, GH 및 RH 공시체의 세 그래프와 관련된 스케일링 특성을 도출하였다. 다양한 형태를 취하는 이들 세 그래프는 GH < RH < RG의 순으로 배열한다. 섯째, 강도차(Δσt)와 경사각(θ) 사이의 상관도를 작성하였다. 위의 두 파라미터 는 -0.003의 지수(λ)를 갖는 지수함수의 상관성을 보여 준다. 두 화강암에서, RH-그래프의 경사각(θRH)이 가장 낮다. 넷째, 세 공시체에 대한 세 종류의 압축강도 그리고 각 공시체에 가해진 압축하중에 평행 배열하는 두 조의 미세균열에 대한 다섯 파라미터 사이의 상관관계를 보여 주는 여섯 유형의 도면을 작성하였다. 거창 및 합천화강암에 대한 이들 도면으로부터, 빈도수(N, 0.872) 및 밀도(ρ, 0.874)와 함께 총 길이(Lt)에 대한 상관계수(R2)의 평균값(0.877)이 가장 높다. 또한, 세 공시체의 최소(0.768) 및 최대(0.804)의 압축강도에 비하여 평균압축강도와 관련된 상관계수의 값(0.829)이 보다 높다. 다섯째, 거창화강암의 세 공시체에서 발달된 상기의 두 조의 미세균열과 평행한 방향으로 측정한 압열인장강도의 분포 특성을 도출하였다. 관련 도면으로부터, R, G 및 H 공시체에 해당하는 이들 인장강도에 대한 세 그래프는 H(R1+G1) < G(R2+H1) < R(R1+G1) 의 순을 보여 준다. 인장강도에 대한 세 그래프의 배열순과 압축강도에 대한 세 그래프의 배열순과 상호 부합한다. 따라서, 세 공시체의 압축강도는 상기한 세 유형의 인장강도와 상호 비례한다. 여섯째, 상기한 세 그래프에서 도출한 각 누적수(N=1~10)에 해당하는 세 인장강도 그리고 각 그래프에 해당하는 다섯 파라미터의 값 사이의 상관 계수를 도출하였다. 10개의 상관도에서 도출한 각 파라미터에 대한 상관 계수의 평균값은 밀도(0.763) < 총 길이(0.817) < 빈도수(0.839) < 평균 길이(Lm, 0.901) 중앙 길이(Lmed, 0.903)의 순으로 증가한다. 일곱째, 세 공시체에 대한 일축압축강도 그리고 압열인장강도 사이의 상관도를 작성하였다. 상기한 상관도는 세 종류의 압축강도 그리고 다섯 그룹(A~E)의 인장강도를 근거로 아홉 유형으로 분류하였다. 관련 도면으로부터, 최소압축강도를 제외한 평균 및 최대압축강도와 함께 인장강도가 증가할수록, 상관계수의 값은 급격하게 증가한다.
동아프리카 열곡대는 아라비아반도와 아프리카 북동부의 경계에서 부채꼴 형태로 남쪽으로 뻗은 대단층 함몰지구대이다. 아프리카 판 내부에 발달한 열곡대의 폭은 35∼60 km이며 연장은 약 4,000 km로 알려져 있다. 열곡대는 에티오피아에서 남서 방향으로 발달하다 에티오피아 남부에서 동, 서 및 남서 열곡대로 나누어진다.이 열곡대는 제3기초 올리고세(30∼35 Ma)부터 에티오피아 북부 아파르 침강대를 중심으로 주 에티오피아 열곡대가 형성되고, 남쪽으로 확장되면서 마이오세에 활성화된다. 서부 열곡대는 동아프리카 대지의 가장자리와 빅토리아 호의 서편을 따라 발달하며, 고각의 정단층에 의해 특징되는 전형적인 반지구대이다. 동부 열곡대(주 에티오피아 열곡대와 케냐 열곡대)는 30 Ma 전 화산활동과 지구조활동이 시작되었으나, 서부 열곡대는 Albert 호 북부에서 12 Ma 전에, Tanganyika 열곡에서는 7 Ma전부터 시작되었다. 서부 열곡대의 남서 방향으로 분기된 남서 열곡대는 DR-콩고 남부와 잠비아의 Tanganyika 호에서부터 남서 방향으로 확장되어 보츠와나 Okavango 열곡대와 연결된다.주 에티오피아 열곡대(MER)의 화산암류와 관련 퇴적암류는 지열, 소다회, 포타쉬(K), 천열수 금, 벤토나이트, 유황 및 부석자원으로 중요한 관련암으로 역할을 한다. 열곡관련 대표적인 광상으로는 Afar 열곡대에 분포하는 Danakhil K-광상과 Me-genta 및 Blackrock 천열수 금광상이다.Danakhil K-광상은 제4기 화산활동과 높은 지열류에 의해 열곡대 내 분포하던 소금 선상지(salt fan)에서 증발작용에 의해 형성된 증발형 K-광상으로서 총 자원량은 약 12.6억톤으로 평가되었다. 이 광상에서는 4종의 K-광물인 실바이트, 카날라이트, 포리하라이트, 카이나이트가 산출한다.아파르 침강대 내 분포하는 대표적인 천열수 금 광상은 텐다호 지구대에 위치하는 Megenta 및 Blackrock 광상이다. 제4기에 EMR에서 산성의 과알칼리 화산활동에 의해 열수활동이 초래되어 현재까지도 활동하여 지열대가 형성되고, 저유황형 금 광상들이 형성되었다. Megenta 저유황형 금 광상은 2009년 발견되었으며, 현재 영국의 Startex International사에 의해 탐사가 진행 중이다. 지금까지의 탐사 결과 옥수질 규화 변질암 분포지에서 5개의 광체가 분포하며, 그중 Hyena 광체에서는 규화 변질된 열수각력암에서 최고 16.75 g/t의 금 품위가 보고되었다. 동아프리카 열곡대의 서편인 부룬디에 분포하는 Gakara REE 광상은 카보너타이트 유형의 REE 광상이다. 이 광상은 400 km2 면적 내 수 cm부터 수 m까지의 폭을 가지는 맥상 또는 망상세맥상의 광체를 형성한다. 주로 조립의 바스트너사이트와 모나자이트로 구성된다. 바스트너사이트의 형성시기는 587±4 Ma인 신원생대로 알려져 있으며, 이 지역에 분포하는 카보너타이트와 알칼리암들이 신원생대에서 신생대까지의 광범위한 연대를 보이는 것은 동일한 구조선을 따라서 일어나는 반복되는 열곡활동으로 해석된다. 또한 REE, U, 인회석 자원의 관련암체로 생각되는 알카리 조면암(네펠린-조면암 포함)과 카보너타이트는 동아프리카 열곡대의 남동부 끝자락인 말라위와 모잠비크에 우세하게 분포한다.