본 연구는 ISO19030 - 선체 및 프로펠러 성능 모니터링 방법을 실선 178 k 벌크선박에 적용한 결과에 관한 것이다. 최근 온실가 스 저감 규정 대응과 해운 경쟁력 확보를 위해 에너지 저감 솔루션을 선박에 적용하려는 시도가 증가하고 있다. 하지만 정량적으로 선박 성능을 분석하기 쉽지 않아 에너지 저감 솔루션의 평가가 쉽지 않았다. 이러한 해운 산업의 요구에 따라 2016년 ISO19030이 표준화되어 선박 성능 분석을 정량화할 수 있는 기반이 마련되었다. 하지만 ISO19030에서 제안하는 환경 보정법은 각 날씨 영향을 고려한 보정이 아닌 정수(Calm Sea) 상태에서 운항한 데이터만 분석하는 방식이다. 이러한 분석 방식은 선박의 운항 구간에 따라 데이터가 필터링 되는 편차가 심하고 정확한 환경 보정을 하지 않아 6개월 이하의 분석은 신뢰하기 어렵다. 본 연구에서는 ISO19030을 실제 3척 선박 3년 이상 장 기간 운항 데이터에 적용하였다. 적용 결과를 토대로 ISO19030 효용성과 한계점을 파악하고 ISO19030에서 제안하는 필터링 방식 대신 ISO15016의 파도 보정(STA-WAVE2)을 통해 성능 분석 방법을 개선하고자 한다.
This paper describes on the real-time tracking of ship's dynamic behavior by AIS information in the coastal waters. The AIS data was received at a land station by using the antenna of AIS receiver mounted on the rooftop of the laboratory, Pukyong National University (PKNU), Busan, Korea, and stored as a NMEA format of serial output sentence of VDM(VHF Data-Link Message) and displayed on the ENC(Electronic Navigational Chart) of a PC-based ECDIS. In this study, the AIS receiver was mainly used to obtain the dynamic information that is necessary to evaluate and track the movement situation of training ship "KAYA" of PKNU in the coastal waters. The change of position with time for the ship turning under the rudder angle of port 30˚ was correctly tracked with the turning circle of 940 m in diameter on the ENC of a PC-based ECDIS. Then, the dynamic information of the AIS system was updated every 6.29 seconds under the turning situation for the speed of 10.9 knots and every 21.65 seconds under the situation running at the speed of 11.05 knots on the straight line route of 155˚, respectively. In case of AIS target tracking in the inshore zone behind large topographical obstructions, such as mountain and apartment buildings, the update rate of dynamic information was irregularly changed by the existence of land obstacles. However, the position tracking by AIS information under the situation existing no sea obstructions was achieved in real or near real-time and the instant presentation of course alternations for the ship was correctly monitored by using a PC-based ECDIS. From these results, we concluded that the PC-based ECDIS technology and methodology combined with the AIS information can be easily extended and applied to the surveillance and management for the fishing operation of fishing vessels in the coastal zone and in the EEZ fishing grounds.
Recently, an international issue due to the discharge of contaminated water from the Fukushima has been highlighted. Since the Fukushima nuclear power plant accident in japan, marine environmental radioactivity survey has been strengthened with increased sampling frequency and range for seawater in territorial waters. And a stationary underwater radiation monitoring system including floating equipment-based system such as oceanographic buoys, tidal stations have been deployed on-site to detect abnormal radiological events. However, stationary monitoring systems may be insufficient for the early detection of abnormal radioactivity over a wide area, since it is a passive way of waiting for radioactive materials to spread in the ocean. So, our team developed a ship-mounted seawater gammaray monitoring system that can be operated remotely and in real time. In this study, it includes a detailed description of the design, installation, monitoring method, and operation of the system.
바다에서 운항하는 선박은 바람과 파도 등의 외란 때문에 횡동요(Rolling), 종동요(Pitching), 상하동요(Heaving) 등의 운동을 하게 되며, 이러한 운동은 가속도 형태로 승객이 느끼게 된다. 따라서, 선박내의 특정 지점에서 좌우방향, 상하방향 가속도와 각속도 등을 계측하면 선원 또는 승객이 선박 운동에 어느 정도 피폭되었는가를 알 수 있다. 본 연구에서 개발한 운동 운항환경 모니터링 시스템은 4개의 가속도계와 가속도계, 자이로가 포함된 관성 자세계측장치, 데이터 취득장치를 포함한 계측 및 통신부, 중앙에서 데이터를 관리하고, 운항환경 지수를 계산하는 전산기로 구성되고, 계측된 가속도와 각속도를 이용하여 운항환경을 나타내는 정량적 지수인 뱃멀미 지수(Motion Sickness Incidence, MSI), 운동유발 작업방해회수(Motion Induced Interrupt, MII)를 실시간으로 계산한다. 개발된 시스템은 한국해양대학교 실습선인 한나라호의 부산-목포, 부산-제주 연안항해시 실선시험을 통하여 유효성을 확인하였다.
In the recent years, major ship registers have demanded improved safety on the hull stress of large bulk carriers which are on navigation or cargo handling in harbour. Under these circumstances, a system that monitors hull stress and ship condition is being more and more important. If efficient and appropriate navigational information is given, safety of navigation would be greatly improved. The major ship registers of the globe are investing a great effort on the development of a system that monitors the hull stress of ship. Using this system, information of hull stress and ship motion is given to the users and also the data is stored on the external data storage system simultaneously. Through this study, a software that monitors hull stress was developed. Not only can randomized input-data of the standard hardwares be applied to the system, but also this system can be operated on and applied to real hardware systems.