검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 235

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The aim of this study is to investigate the enhancement of performance and the mix design method for asphalt mixtures utilizing ferronickel slag, an industrial by-product METHODS : To enhance the performance of FNS asphalt, waste tire powder (CR) was incorporated, and the characteristics of FNS asphalt aggregate, along with the impact of CR, were evaluated through the mix design process. RESULTS : CR is found to be suitable with a size of 30 mesh, and the optimal usage amount is determined to be 1±0.1% of the mixture weight, considering dense grade asphalt mixture. Volumetric design considering the swelling characteristics of CR is necessary, and a mixing design with a consistent tendency can be achieved only when an appropriate VMA is secured. CONCLUSIONS : The mix design for FNS-R asphalt mixture requires an increase of approximately 1% in VMA compared to conventional dense-graded asphalt mixtures to accommodate the swelling of CR. Additionally, FNS-R asphalt exhibits improved resistance to rutting comparable to modified asphalt and meets quality standards, including stripping resistance.
        4,000원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study is aimed to economic analysis of the ferronickel slag pavement method carried out to suggest the necessity of developing ferronickel slag pavement technology. METHODS : A life cycle cost analysis of the application of the Ferronickel Slag pavement method and the cutting + overlay pavement method was performed to compare the economic indicators and greenhouse gas emissions for each pavement method. RESULTS : As a result of the analysis, regardless of the Ferronickel Slag mixing rate, if the common performance of the Ferronickel Slag pavement method is the same or superior to the existing pavement method, it is more economical than the existing pavement method. Furthermore, the lower the maintenance cost of the Ferronickel Slag pavement method, the higher the economic feasibility due to the high Ferronickel Slag mixing rate. Greenhouse gas emissions can be reduced from at least 9% to up to 53% through the application of the Ferronickel Slag pavement method, except for some scenario analysis results. CONCLUSIONS : This study provided that the Ferronickel Slag pavement method was superior to the existing pavement method in terms of economic and environmental aspects. Therefore, it was found that the objective justification of developing road pavement technology using Ferronickel Slag was secured.
        4,000원
        4.
        2023.05 구독 인증기관·개인회원 무료
        Currently, KHNP-CRI has developed 100 kW plasma torch melting facility to reduce the amount of radioactive waste in nuclear power plant. Plasma torch melting technology uses electric arc phenomena like lightning to melt the target material at a high temperature of about 1,600°C. The technology is applicable to treatment for various types of waste such as combustible, non-combustible and mixed wastes. The volume reduction ratio by the technology is respectively expected to be about 1/60 of combustible wastes and about 1/5 for non-combustible wastes. It is important to discharge the melt without problems in the melting technology. In general, molten slag has properties such as high viscosity and quick solidification. Because of the properties, when discharging into slag container, the final product is accumulated like a mountain. To improve this problem, there is three suggestions; 1) rotation of the slag container, 2) vibration of the slag container, and 3) heating of the slag container.
        7.
        2022.05 구독 인증기관·개인회원 무료
        Tin slag is a byproduct obtained from the tin smelting industry and contained naturally occurring radioactive material (NORM); therefore, it has to be managed accordingly. This study focuses on recycling the waste in exchange for natural aggregates for road pavement due to the potential features as construction materials. The main objective of this study is to analyze the use of tin slag by diluting its radioactivity level and as the replacement of natural aggregates while focusing on identifying the mechanical properties of the mixture. Tin slag was used as coarse aggregate in the range of 0–85% while the percentage of recycle glass was maintained at 15% and granite rocks in range of 0–100%. In this research, the concentration activity of NORM in tin slag have been measured using a gamma ray spectrometer. Few laboratory tests for the final product are carried out such as Los Angeles abrasion value (LAAV), aggregate crushing value (ACV), and aggregate impact value (AIV). This study was also conducted to analyze the leachability of As, Cd, Ba, Cr, Pb, Se and Ag from the different composition. From the measurement result, the average concentration of 226Ra, 232Th and 40K are 318.21 Bq·kg−1, 602.07 Bq·kg−1 and 89.84 Bq·kg−1, respectively. The outdoor dose rates were found to be lower than 1.5 mSv·yr−1 in sample A1, A2 and A3 which is the recommended limit for construction materials. The sample toxicity was assessed using the toxicity characteristic leaching procedure (TCLP) and the concentration of the elements studied was analysed using ICP-MS. The result from the analysis indicated that the concentrations of the heavy metal elements were between 0.001–26.94 mg·kg−1, which is lower than the limit for each element. As a conclusion, addition of tin slag between 5 to 25% in exchange of granite rocks as road pavement have showed potential evidence in the test for construction material. Besides, it has low leachability to the environment while diluting the radioactivity level.
        8.
        2022.05 구독 인증기관·개인회원 무료
        Plasma melting technology has been considered as promising technology for treatment of radioactive wastes. According to the IAEA TECDOC-1527 report (2006), the technology has an advantage that it can treat regardless of waste types which is both combustible and non-combustible wastes. In particular, it is expected that a large amount of concrete, a representative non-combustible wastes, will be generated during the operation and dismantling of nuclear power plants. In order to treat the concrete waste in plasma torch melting system, various factors could be considered like the slag of electric conductivity, viscosity and melting temperature. Above all, as a critical factor, the viscosity of the melt is very important to easily discharge the melt. The viscosity of slag (SiO2-CaO-Al2O3 system) can be lowered by adding a basic oxide such as CaO, Na2O, MgO and MnO. The basic oxides are donors of oxygen ions. These oxides are called notwork breakers, because they destroy the network of SiO2 by reacting with it. In this study, the slag composition of the concrete waste was developed to apply the plasma torch melting. Also, demonstration test was performed with the developed slag composition and 100 kW plasma torch melting system.
        9.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this experimental study, the resistance of blended cement concrete containing air-cooled slag (AS) and water-cooled slag (WS) to freeze–thaw action was investigated. For comparison, the durable performance of ordinary Portland cement (OPC) concrete exposed to a similar damage environment was also evaluated. METHODS : Based on the ASTM C 666 standard, the relative dynamic modulus of elasticity, mass ratio, surface electric resistivity, and compressive strength of blended cement concrete specimens were periodically measured and compared with those of OPC concrete to evaluate the durability of concrete exposed to the freezing-thawing environment. In addition, microstructural characteristics of deteriorated concrete parts were evaluated using scanning electron microscopy (SEM) and energy dispersive spectroscopy techniques to detect products formed by freeze–thaw action. RESULTS : It was found that the resistance of blended cement concrete containing AS and WS to freeze–thaw action was significantly better than that of OPC concrete. Furthermore, the SEM results revealed the frost damage of OPC concrete, owing to the formation of thaumasite. CONCLUSIONS : The application of AS in concrete can effectively improve the durability of concrete, particularly in freeze–thaw environments.
        4,000원
        10.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This paper presents the experimental results of tests conducted on concrete produced with air-cooled (AS) and water-cooled (WS) ground blast-furnace slag exposed to multi-deterioration environments of carbonation and scaling. METHODS : Carbonated and uncarbonated concrete specimens were regularly monitored according to the ASTM C 672 standard to evaluate the durability of concrete exposed to both scaling and combined carbonation and scaling conditions. Additionally, mechanical properties, such as compressive strength, flexural strength, and surface electric resistivity, were analyzed. RESULTS : It was found that concrete specimens produced with AS and WS had a beneficial effect on the mechanical properties because of the latent hydraulic properties of the AS and WS mineral admixtures. Moreover, carbonated concrete showed good scaling resistance in comparison to uncarbonated concrete, particularly for concrete produced with AS and WS. CONCLUSIONS : The improved scaling resistance of carbonated concrete showed that AS is a suitable option for binders used in cement concrete pavements subjected to combined carbonation and scaling.
        4,000원
        12.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This paper presents the noise reduction effect of asphalt concrete pavement using steel slag aggregate. METHODS: Steel slag aggregates induce various mechanical effects because of their high stiffness and specific gravity. It is also known that the noise reduction effect is due to its high specific gravity and porous nature. In this study, the noise reduction in a steel slag asphalt concrete pavement section was measured and analyzed. RESULTS : On average, an asphalt concrete pavement with steel slag reduces road traffic noise by about 2 dB(A). In addition, the analysis of sound pressure levels by frequency showed lower sound pressure levels in steel slag asphalt concrete pavement than general HMA in all frequency ranges (from low to high frequencies). An analysis of the benefits with regard to noise, by assuming a road-traffic noise reduction of 2 dB(A) with asphalt concrete pavement using steel slag, shows that the noise abatement cost approach can save 1.6 million won a year over soundproof wall costs. In addition, the noise damage cost approach results in cost savings (with regard to noise) of between 19 and 60 million won per year depending on the population density. CONCLUSIONS: The use of steel slag aggregate as an asphalt concrete mixture material not only improves the mechanical performance but also has a noise reduction effect. It is expected that the steel slag asphalt concrete pavement can reduce the environmental burden by utilizing resources and provide a safer and more comfortable pavement condition to the road users.
        4,000원
        13.
        2018.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, glass fibers are fabricated via a continuous spinning process using manganese slag, steel slag, and silica stone. To fabricate the glass fibers, raw materials are put into an alumina crucible, melted at 1550℃ for 2 hrs, and then annealed at 600℃ for 2 hrs. We obtain a black colored glass. We identify the non-crystalline nature of the glass using an XRD(x-ray diffractometer) graph. An adaptable temperature for spinning of the bulk marble glass is characterized using a high temperature viscometer. Spinning is carried out using direct melting spinning equipment as a function of the fiberizing temperature in the range of 1109℃ to 1166℃ , while the winder speed is in the range of 100rpm to 250rpm. We investigate the various properties of glass fibers. The average diameters of the glass fibers are measured by optical microscope and FE-SEM. The average diameter of the glass fibers is 73 μm at 100rpm, 65 μm at 150rpm, 55 μm at 200rpm, and 45 μm at 250rpm. The mechanical properties of the fibers are confirmed using a UTM(Universal materials testing machine). The average tensile strength of the glass fibers is 21MPa at 100rpm, 31MPa at 150rpm, 34MPa at 200rpm, and 45MPa at 250rpm.
        4,000원
        14.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Durability of concrete is traditionally based on evaluating the effect of a single deterioration mechanism such as freezing & thawing action, chloride attack, carbonation and chemical attack. In reality, however, concrete structures are subjected to varying environmental exposure conditions which often results in multi-deterioration mechanism occurring. This study presents the experimental results on the durability of concrete incorporating air-cooled slag(AS) and/or water-cooled slag(WS) exposed to multi-deterioration environments of chloride attack and freezing & thawing action. METHODS: In order to evaluate durable performance of concretes exposed to single- and multi-deterioration, relative dynamic modulus of elasticity, mass ratio and compressive strength measurements were performed. RESULTS: It was observed that multi-deterioration severely affected durability of concrete compared with single deterioration irrespective of concrete types. Additionally, the replacement of cement by AS and WS showed a beneficial effect on enhancement of concrete durability. CONCLUSIONS : It is concluded that resistance to single- and/or multi-deterioration of concrete is highly dependent on the types of binder used in the concrete. Showing the a good resistance to multi-deterioration with concrete incorporating AS, it is also concluded that the AS possibly is an option for concrete materials, especially under severe environments.
        4,000원
        15.
        2018.05 구독 인증기관·개인회원 무료
        The world-wide need to reduce the energy used and the greenhouse gases emitted during cement manufacture has led to the pursuit of more eco-efficient materials, such as ground granulated blastfurnace slag(GGBS) and fly ash. Especially, GGBS is a by-product generated during the manufacture of pig ions. GGBS can be divided into water-cooled slag(WS) and air-cooled slag(AS). With comparison of WS, the AS is formed by allowing the molten slag to cool relatively slowly under ambient conditions. This study presents experimental findings on the mechanical and durability performance of cement concrete pavement with replacement of cement by WS and/or AS. In order to produce concrete specimens, total replacement of cement by GGBS(WS+AS) was fixed at 40% by mass. Concrete specimens were regularly monitored for the variation of mechanical properties such as flexural strength, compressive strength and initial surface absorption. In addition, in order to assess durability of concrete pavement with WS and/or AS, the chloride ion penetration resistance and scaling resistance tests were adopted, and the corresponding results were compared to those of plain concrete pavement. The test results indicated that the performance of concrete pavement was significantly dependent on the replacement level of WS by AS. Concrete specimens incorporating 20% replacement level of AS showed a poor mechanical performance, while 5% replacement of AS showed a beneficial effect both mechanical and durability performance. Especially, the 5% AS replacement led to the higher resistance of concrete pavement against frost-salt action. Based on the experimental results, the present study would be helpful to design high-performance cement concrete pavement.
        16.
        2018.05 구독 인증기관·개인회원 무료
        In this study, we conducted laboratory tests to evaluate the moisture resistance of the asphalt mixture containing air-cooled slag. Generally, in Korea, hydrated lime is used up to 1.5% of the aggregate weight to improve the moisture resistance of the asphalt mixture. The slag used in this study is a byproduct produced in the steel industry and can be produced through a specific process. And its chemical composition is similar to that of the hydrated lime stone and satisfies the filler quality standards of the Ministry of Land, Transport and Transport. In order to evaluate the moisture resistance of the asphalt mixture containing air-cooled slag, we conducted the dynamic immersion test, which is a non-compaction mixture test. Also we conducted the indirect tensile strength ratio test and the Hamburg wheel tracking test for compaction asphalt mixture test. As a result of the dynamic immersion test, the effect of stripping prevention was similar to that of hydrated lime because it did not show much difference from the hydrated lime mixture. In the case of indirect tensile strength test, the specimens prepared in the laboratory and on the site satisfied the quality standards of the Ministry of Land, Transport and Logistics and the TSR value increased with increasing the content of air-cooled slag. However, when the content of air-cooled slag is more than 2%, the indirect tensile strength value is getting lower. So it is judged that the appropriate content should be determined to be 2% or less. In the case of the Hamburg wheel tracking test, when the steel wheel load passed 20,000 times on the asphalt mixture containing 2% of air-cooled slag, it showed 5.27mm deformation. And the stripping point was not observed. In this study, it was found that when the air-cooled slag is used as a substitute for hydrated lime, the moisture resistance of the asphalt mixture can be improved. It is considered that the aircooled slag can be used for the asphalt pavement material through the characteristics analysis of mechanical and field application in the future
        17.
        2018.05 구독 인증기관·개인회원 무료
        Road construction and maintenance of deteriorated pavement has been continued since industrialization. Demand for aggregate with a good quality has been increasing from limited resources, but it is difficult to supply aggregates smoothly due to environmental protection regulations (Jo et al., 2015). Accordingly, efforts are being made in the road construction industry to utilize industrial products for the purpose of efficient use of resources and environmental preservation. Steel slag which contains a non-reactive CaO is used primarily as a material for embankment and soil covering depending on the expansion and environmental issues. On the other hand, steel slag shows a variety of performance improvements as including increased elasticity factors, increased indirect tensile strength, and improved plastic deformation resistance when handling the expansion issue with sufficient aging processing (Ali et al., 1991, Asi et al., 2007). In this study, the behavior characteristics of the slag asphalt concrete mixture were analyzed according to temperature to encourage the use of steel slag aggregate. Specimens with steel slag showed a higher initial strain than those with natural aggregates. But strain of specimens were nearly similar over the repeated temperature changes. The experimental results for specimens with these characteristics were less likely to cause the performance problems from temperature because the measured strains were relatively small than strain caused from other loads. In conclusion, it is necessary to design and construction process reflecting the behavior characteristics according to temperature to encourage the use of steel slag aggregate.
        18.
        2018.05 구독 인증기관·개인회원 무료
        This study evaluated the effect of steel slag and steel wool fibers (SWF) on self-healing performance of asphalt mixture. The microstructure and distribution of SWF in mixture were examined by a computerized tomography scan and image analysis program. Thermal conductivity was investigated using the thermal constant analyser. The heating rate and healing performance were measured by induction heating system. The results showed the uneven distribution and the agglomeration in the mixtures when the content of fibers exceed a certain dosage. It was found that the mix with steel slag had higher heating rate than the mix with normal aggregate; however, its healing performance was slightly lower because of the breaking of weak steel slag. Finally, the mechanical test results indicated that SWF can enhance the resistance and prolong the fatigue life of asphalt mixtures.
        19.
        2018.05 구독 인증기관·개인회원 무료
        This paper evaluates the affection of steel slag in the asphalt mixtures for the self-healing purpose through microwave heating technique. Four different contents of steel wool fibers (SWF) were developed in hot mix asphalt and two types of aggregate were used: steel slag aggregate and normal aggregate. By using the infrared camera, the thermal distribution, as well as the optimum healing time of test samples, were recorded. All mixtures were evaluated their healing performance throughout 8 cycles. The substitution of about 30% normal coarse aggregate by steel slag is prominent due to its effect not only produces better healing performance but also enhances the whole mixture improve load-displacement trend with higher ductile behavior. The application of steel slag in HMA is a promising method which contributes toward the sustainable roadway development.
        20.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This paper presents a mix design method for using steel slag as an aggregate for asphalt mixtures. METHODS: Steel slag has a different density and absorption rate than natural aggregates. The asphalt content was calculated according to the steel slag characteristics, and the formula for aggregate-gradation correction was presented. RESULTS: The asphalt mix was designed using the proposed equations. Using the proposed mix design method, it was possible to design the asphalt mixture according to the target-usage amount of the recycled aggregate. CONCLUSIONS: The suggested method can be used for asphalt mix design using aggregates with different densities and absorption rates. It is expected to contribute to quality improvement by ensuring accurate calculation of mixing ratios for steel slag asphalt mixtures.
        4,000원
        1 2 3 4 5