검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 127

        4.
        2023.05 구독 인증기관·개인회원 무료
        Kori unit 1, the first PWR (Pressurized Water Reactor) in Korea, was permanent shut down in 2017. In Korea, according to the Nuclear Safety Act, the FDP (Final Decommissioning Plan) must be submitted within 5 years of permanent shutdown. According to NSSC Notice, the types, volumes, and radioactivity of solid radioactive wastes should be included in FDP chapter 9, Radioactive Waste Management, Therefore, in this study, the types depending on generation characteristics and radiological characterization methods and process of solid radioactive waste were analyzed. Solid radioactive waste depending on the characteristics of the generation was classified into reactor vessel and reactor vessel internal, large components, small metals, spent nuclear fuel storage racks, insulation, wires, concrete debris, scattering concrete, asbestos, mixed waste, soil, spent resins and filters, and dry active waste. Radiological characterization of solid radioactive waste is performed to determine the characteristics of radioactive contamination, including the type and concentration of radionuclides. It is necessary to ensure the representativeness of the sample for the structures, systems and components to be evaluated and to apply appropriate evaluation methods and procedures according to the structure, material and type of contamination. Therefore, the radiological characterization is divided into concrete and structures, systems and components, and reactor vessel, reactor vessel internal and bioshield concrete. In this study, the types depending on generation characteristics and radiological characterization methods and process of solid radioactive waste were analyzed. The results of this study can be used as a basis for the preparation of the FDP for the Kori unit 1.
        5.
        2022.10 구독 인증기관·개인회원 무료
        Solid radioactive waste such as rubble, trimmed trees, contaminated soil, metal, concrete, used protective clothing, secondary waste, etc. are being generated due to the Fukushima nuclear power plant accident occurred on March 11, 2011. Solid radioactive waste inside of Fukushima NPP is estimated to be about 790,000 m3. The solid radioactive waste includes combustible rubble, trimmed trees, and used protective clothing, and is about 290,000 m3. These will be incinerated, reduced to about 20,000 m3 and stored in solid waste storage. The radioactive waste incinerator was completed in 2021. About 60,000 m3 of rubble containing metal and concrete with a surface dose rate of 1 mSv/h or higher will be stored without reduction treatment. Metal with a surface dose rate of 1 mSv/h or less are molten, and concrete undergoes a crushing process. About 60,000 m3 of contaminated soil (0.005 ~1 mSv/h) will be managed in solid waste storage without reduction treatment. The amount of secondary waste generated during the treatment of contaminated water is about 6,500 huge tanks, and additional research is being conducted on future treatment methods.
        6.
        2022.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Operating and decommissioning nuclear power plants generates radioactive waste. This radioactive waste can be categorized into several different levels, for example, low, intermediate, and high, according to the regulations. Currently, low and intermediate-level waste are stored in conventional 200-liter drums to be disposed. However, in Korea, the disposal of intermediate-level radioactive waste is virtually impossible as there are no available facilities. Furthermore, large-sized intermediate- level radioactive waste, such as reactor internals from decommissioning, need to be segmented into smaller sizes so they can be adequately stored in the conventional drums. This segmentation process requires additional costs and also produces secondary waste. Therefore, this paper suggests repurposing the no-longer-used spent nuclear fuel casks. The casks are larger in size than the conventional drums, thus requiring less segmentation of waste. Furthermore, the safety requirements of the spent nuclear fuel casks are severer than those of the drums. Hence, repurposed spent nuclear fuel casks could better address potential risks such as dropping, submerging, or a fire. In addition, the spent nuclear fuel casks need to be disposed in compliance with the regulations for low level radioactive waste. This cost may be avoided by repurposing the casks.
        4,000원
        7.
        2022.05 구독 인증기관·개인회원 무료
        Kori and Wolsong unit 1 were permanently shutdown in 2017 and 2019, respectively. During the decommissioning of a nuclear power plant, various types and levels of decommissioning waste will be generated sporadically in many areas in a relatively short period of time, so safe management of decommissioning waste is expected to emerge as a very important issue in the future. Since Korea has no experience in decommissioning nuclear power plants, radionuclides added by abnormal routes or errors in data can be identified through the list of expected nuclides and radioactivity data during decommissioning by analyzing cases of overseas nuclear power plants decommissioning. Therefore, it is expected that safety information of nuclear power plants in the United States (i.e. all information related to safety, such as radioactive waste characteristics and accident or decommissioning information at nuclear power plants) can be utilized when decommissioning Korea nuclear power plants. Therefore, in this study, the characteristics of solid radioactive waste were analyzed by collecting solid radioactive waste data during operation and after permanent shutdown of nine PWR nuclear power plants in the United States, and the correlation between the characteristics data of solid radioactive waste was analyzed. However, in the case of Korea, only data from the United States were analyzed because there was no data for each radionuclide that were disclosed when disposing of radioactive waste in LILW repository and there was no nuclear power plant that had been decommissioned. Correlation analysis of solid radioactive waste was performed by linking radioactivity of radionuclides, volume of waste, and total radioactivity data based on decommissioning work and accident data after permanent shutdown or during operation. The correlation analysis of total radioactivity, volume, and radioactivity of each nuclide of solid radioactive waste during operation and after permanent shutdown was performed using XLSTAT, an Excel add-in software, for carrying out Mann-Kendall Test and estimating Sen’s slope. Trends during operation and after permanent shutdown were compared and the effects of specific events or tasks were analyzed. This study is expected to be utilized as basic data related to safety management of decommissioning Korea nuclear power plants in future.
        9.
        2020.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        An important property of glass and ceramic solid waste forms is processability. Tellurite materials with low melting temperatures and high halite solubilities have potential as solid waste forms. Crystalline TiTe3O8 was synthesized through a solid-state reaction between stoichiometric amounts of TiO2 and TeO2 powder. The resultant TiTe3O8 crystal had a three-dimensional (3D) structure consisting of TiO6 octahedra and asymmetric TeO4 seesaw moiety groups. The melting temperature of the TiTe3O8 powder was 820℃, and the constituent TeO2 began to evaporate selectively from TiTe3O8 above around 840℃. The leaching rate, as determined using the modified American Society of Testing and Materials static leach test method, of Ti in the TiTe3O8 crystal was less than the order of 10-4 g·m-2·d-1 at 90℃ for durations of 14 d over a pH range of 2-12. The chemical durability of the TiTe3O8 crystal, even under highly acidic and alkaline conditions, was comparable to that of other well-known Ti-based solid waste forms.
        4,000원
        12.
        2020.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Thermal decomposition of the uranyl phosphate mineral phase meta-ankoleite (KUO2PO4·3H2O) has been considered in relation to high temperature thermal sintering for the immobilisation of a uranyl phosphate containing waste. Meta-ankoleite thermal decomposition was studied across the temperature range 25 – 1200℃ under an inert N2 atmosphere at 1 atm. It is shown that the meta-ankoleite mineral phase undergoes a double de-hydration event at 56.90 and 125.85℃. Subsequently, synthetically produced pure meta-ankoleite remains stable until at least 1150℃ exhibiting no apparent phase changes. In contrast, when present in a mixed waste the meta-ankoleite phase is not identifiable after thermal treatment indicating incorporation within the bulk waste either as an amorphous phase and/or as uranium oxide. Visual inspection of the waste post thermal treatment showed evidence of self-sintering owing to the presence of glass former materials, namely, silica (SiO2) and antimony(V) oxide (Sb2O5). Therefore, incorporation of the uranium phase into the waste as part of waste sentencing and immobilisation via high temperature sintering for the purpose of long-term disposal is deemed feasible.
        4,000원
        17.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        지구 온난화, 석유고갈, 환경오염에 대한 해결 방안으로 수송부분에서 국제적으로 바이오연 료에 관한 연구가 활발하게 이루어지고 있다. 그 중 바이오디젤은 석유계 디젤과 비교해 이산화탄소 및 대기오염 물질 배출이 적고 세탄가가 높은 장점을 가지고 있다. 현재 국내 바이오디젤 수요는 지속적으로 증가하고 있으나 원료부족으로 인해 수입의존도가 커지고 있는 상황이다. 이러한 문제를 해결하기 위해 본 연구는 현재 사용되지 않는 음폐유(약 33 % 유리지방 산 함유)를 Amberlyst-15 촉매가 이용한 에스테르화 반응을 통해 바이오디젤 원료로서 활용가능성을 확인 하였다. 다양한 반응 조건의 영향을 조사하기 위한 실험을 수행한 결과 반응온도 383 K에서 97.62 %의 전환 율을 얻었으며, 반응속도는 353 K에서 373 K로 증가 할 때 최대 1.99 배까지 상승하였다. 또한 동역학 적 결과를 이용하여 29.75 kJ/mol의 활성화 에너지를 확인하여 선행연구에서 연구된 타 고체촉매에 비 해 에스테르화반응에 Amberlyst-15 더 적합함을 확인하였다. 그리고 메탄올 몰 비가 증가함에 따라 최 대 91.43 %의 반응 전환율을 확인하였고, 촉매량 영향의 경우 0 wt%에서 20 wt%까지 증가시킨 결과 반응 전환율이 43.78 %에서 94.62 %까지, 초기 반응 속도는 1.1∼1.4 배로 상승하는 것을 확인하였 다. 교반속도의 경우 100∼900 rpm의 조건에 따라 실험을 수행하였으나 반응 전환율에는 큰 영향을 주 지 않음을 확인하였고 반응 시간에 따른 영향의 경우 240 분 까지 산가 감소를 보이다가 300 분이 지 나면서부터 산가가 상승하는 결과를 가져왔다. 그리고 위 실험들을 통해 도출된 최적 조건을 적용하여 음폐유 에스테르화 반응에 적용하였고 그 결과 반응시간 60 분에서 음폐유와 모사 폐유지간의 13 %의 반응 전환율 차이를 보였으나 최종 240 분 반응 전환율은 모사 폐유지 98.12 %, 음폐유는 97.62 %로 거의 유사한 결과를 얻었다.
        4,200원
        20.
        2013.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        본 연구는 우라늄 변환시설 운전 중에 발생된 우라늄 함유 슬러지를 가열 처리하여 분말 형태로 저장 중인 우 라늄 함유 슬러지의 열분해 고체폐기물 (Thermal Decomposed Solid Waste of uranium-bearing sludge : TDSW)을 대상으로 TDSW의 용해, TDSW 질산 용해액의 알카리화에 의한 불순물 제거 및 탄산염 알카리화 용 액의 산성화에 의한 U 선택적 제거/회수 특성 등을 규명하였다. TDSW의 용해는 질산용해가 탄산염 산화용해 보다 효과적이었다. 1M 질산에서 TDSW의 약 30wt%가 고체 잔류물로 불용해되었고, TDSW 내 함유 U은 99% 이상이 용해되었다. TDSW의 질산 용해액의 알카리화는 탄산염에 의한 알카리화가 불순물 제거 측면에서 보 다 효과적이며, 탄산염 알카리화 (pH 약 9)에서 U과 공용해된 Ca, Al, Zn 및 Fe 등의 98±1%가 제거되었다. 그 리고 불순물이 거의 제거된 알카리화 용액 (0.5 M H2O2 첨가)의 산성화 (pH 약 3) 에서 U의 99% 이상을 회수 할 수 있어 TDSW로부터 U을 선택적으로 제거/회수할 수 있었다.
        4,000원
        1 2 3 4 5