본 연구에서는 경피신경전기자극(TENS)을 이용하여 다양한 자극 강도에 따른 뇌혈관에 미치는 영향을 확인하고 자 한다. 특히 비지각적 감각의 전기자극을 통해 총경동맥(CCA)에서의 혈류 변화 및 혈관의 구조적인 변화를 확인 해 보고자 한다. 본 연구에는 20대의 건강한 성인 24명이 참여하였다. 자극 강도는 감각 역치 미만, 감각 역치, 그리 고 감각 역치 초과 세 가지를 각각 랜덤 순서로 적용하였다. 측정위치는 CCA 분기점의 1cm 하단에서 측정하였고, 혈류속도는 C-mode 도플러, 혈관의 구조는 B-mode 영상을 통해 측정하였다. 측정은 각각의 자극별로 중재 전, 중재 중, 그리고 중재 후에 수행하였고 각 세션마다 혈압의 변화를 측정하였다. 그 결과 최고 수축기 속도(PSV)는 역치 미만의 비지각적 감각자극에서 중재 후 유의하게 감소함이 확인되었다(p = .008). 역치 미만의 자극 후 PSV는 자극 전보다 평균 3.04% 유의하게 감소한 것으로 나타났다(p = .011). 반면 CCA의 혈관 직경의 변화는 모든 강도에서 자극 전후 유의한 변화가 나타나지 않았다. 본 연구에서 적용한 단시간의 비지각적 전기자극이 혈관의 직경이나 혈 압의 유의한 변화를 주지 않으면서 즉각적인 혈류속도 감소에 효과가 있음을 발견했다. 따라서 본 연구는 경동맥 부위에 환자의 불편함과 부작용이 없는 전기자극을 통해 뇌혈류의 조절이 가능하다는 것을 보여주는 중요한 시도로 평가될 수 있다.
본 연구에서는 실제 자연의 숲과 인위적으로 통제가 가능한 디지털 환경에서의 가상현실(VR)을 활용한 가상 숲에서 의 체험이 피험자의 심리적 또는 생리적으로 미치는 치유효과를 알아보기 위하여 수행되었다. 이를 밝혀내기 위해 C대학 건강한 학부생 81명을 실험참가자로 2022. 9. 5~12. 9에 걸쳐 디지털 환경 내에서의 시각을 통한 산림자극 효과를 실험하였다. 실험은 디지털환경(2D, 3D)에서 숲 환경을 통한 시각적 산림자극의 심리적, 생리적 회복 효과를 평가하였다. 심리적 효과분석인 SRI(스트레스 반응척도)의 실험결과는 집단 간 차이가 통계적으로 유의한 것으로 나타났다. 심리적 스트레스 측정을 위한 SRI 실험 결과는 세 집단 중 Control 집단을 제외한 디지털 환경에서의 2D 집단은 사전과 사후 간 차이가 미미한 것으로 나타났다. 3D 집단에서는 사전보다 사후가 낮게 나타났다. 이 결과 산림을 기반으로 한 디지털 환경(2D, 3D)에서 시각을 통한 산림자극이 심리적 스트레스를 유의하게 감소시켜주는 효과가 있음을 확인하였다. 디지털환경 내에서 시각을 통한 산림자극이 EEG(뇌파)에 미치는 변화 분석 결과, 이완이나 안정화 때 활성화 되는 것으로 나타나는 알파파(RA)가 긴장이나 각성 때 발현되는 베타파(RB) 보다 활성화 되는 것으로 확인 되었다. 본 연구는 신체적 거동 불편 등 이동 제약으로 인하여 자연 숲 환경에서 체험을 할 수 없는 이용자들에게 디지털환경 내에서 가상현실(VR) 속 숲 환경을 구현하여 시각적 산림자극 체험 기회를 제공함으로서 심리적, 생리적 회복 환경을 만들어 주는데 사용 할 수 있을 것으로 사료된다. 이러한 연구 결과가 디지털 환경에서 산림치유에 대한 활용의 기반이 되길 기대하고, 가상현실(VR)을 이용한 프로그램이 산림치유 활동에 도움이 되기를 기대한다.
본 연구는 미세전류자극이 비만인의 체성분과 혈중지질성분의 변화에 미치는 효과를 규명하고, 복합운동의 효과와 비교함으로써 효과적인 체형 관리 방안으로서 미세전류자극의 유용성을 밝히고자 하였 다. 체지방율 30% 이상인 여대생 30명을 통제집단, 복합운동집단, 미세전류자극집단으로 분류하였으며, 각 집단 별 4주간의 처치 전후 체중, 체지방율, 허리 둘레 등의 체성분 요인과 TG, TC, apolipoprotein 등의 혈중지질성분을 측정한 자료를 분석하여 다음과 같은 결과를 얻었다. 통제집단에서는 모든 측정 항목에서 통계적으로 유의한 차이가 나타나지 않은 반면 복합운동 집단에서는 허리둘레와 TC가 유의하게 감소한 것 으로 나타났고, 미세전류자극 집단에서는 체중, 체지방율, 허리둘레, apolipoprotein 등이 유의하게 감소한 것으로 나타났다. 이러한 연구결과를 고려할 때 미세전류 자극은 비만인의 체성분과 혈중지질성분을 개선 시켜 건강한 신체를 갖도록 하는데 효과적인 중재 방안으로 제안할 수 있다.
Background: Core muscle weakness occurs due to trunk asymmetry and spinal malalignment after stroke. Core exercise is being implemented to improve trunk control and sitting position in stroke patients.
Objectives: To investigated the effects of core muscle electrical stimulation on trunk control and dynamic balance in stroke patients.
Design: Quasi-experimental study.
Methods: A total of 30 stroke patients were recruited and divided into two groups: experimental group (core muscle electrical stimulation group) and control group (sham core muscle electrical stimulation group). Trunk impairment scale (TIS) was used to measure trunk control. BioRescue was used to measure sitting dynamic balance.
Results: In both groups, all TIS scores and sitting dynamic balance abilities were improved increased significantly after intervention (P<.05). Changes in TIS scores and sitting dynamic balance abilities were significantly greater in the experimental group than the control group (P<.05).
Conclusion: It was found that core muscle electrical stimulation can be used as an effective method for trunk control and balance recovery in stroke patients.
Background: Total hip replacement (THR) is performed in patients with femur fractures and osteoarthritis. THR patients have balance problems even after surgery. There is a lack of research on vibration stimulation interventions for balance in THR patients.
Objectives: To investigated the effect of vibration stimulation intervention on the balance and gait of THR patients.
Design: Randomized controlled trials.
Methods: 44 subjects were randomly assigned to a vibration stimulation group (VSG) and a non-vibration stimulation group (N-VSG). Seven study subjects dropped out, and 37 completed the study. Timed up and go (TUG) and Berg balance scale (BBS) were used for balance assessment, and 10-meter walk (10MW) was used for gait assessment. The intervention program was conducted three times a week for 4 weeks.
Results: Significant differences within the groups in balance (BBS, TUG) and gait (10MW) between the VSG and the N-VSG. There was no difference between the two groups in any variable.
Conclusion: The VSG improved the balance and gait of THR patients without any difference from the N-VSG. However, VSG showed a higher effect size than N-VSG.
Background: Neuromuscular electrical stimulation (NMES) is used for muscle strengthening. While voluntary muscle contraction follows Henneman et al.’s size principle, the NMES-induced muscle training disrespects the neurophysiology, which may lead to unwanted changes (i.e., declined balance ability).
Objects: We examined how the balance was affected by abdominal muscle training with the NMES.
Methods: Fifteen young adults (10 males and 5 females) aged between 21 and 30 received abdominal muscle strengthening with NMES for 23 minutes. Before and after the training, participants’ balance was measured through one leg standing on a force plate with eyes open or closed. Outcome variables included mean distance (MDIST), root mean square distance (RDIST), total excursion (TOTEX), mean velocity (MVELO), and 95% confidence circle area (AREA) of center of pressure data. Two-way repeated measures analysis of variance was used to test if these outcome variables were associated with time (pre and post) and vision.
Results: All outcome variables were not associated with time (p > 0.05). However, all outcome variables were associated with vision (p = 0.0001), and MVELO and TOTEX were 52.4% (45.5 mm/s versus 95.6 mm/s) and 52.4% (364.1 mm versus 764.5 mm) smaller, respectively, in eyes open than eyes closed (F = 55.8, p = 0.0005; F = 55.8, p = 0.0005). Furthermore, there was no interaction between time and vision (F = 0.024, p = 0.877).
Conclusion: Despite the different neurophysiology of muscle contraction, abdominal muscle strengthening with NMES did not affect balance.
Background: The transcutaneous electrical nerve stimulation (TNES) is the most used non-invasive treatment method in physical therapy. As the mobile TENS (MTENS) has become popular, patients with pain have started using MTENS to reduce pain.
Objectives: To evaluate pain, range of motion, and muscle strength before and after using MTNES in patients with wrist pain.
Design: Quasi-experimental research.
Methods: We conducted an experiment with 80 patients; 15 patients were dropped out, and 35 and 30 patients were evaluated in the experimental group (EG) and control group (CG), respectively. Before and after using MTENS for 4 weeks, patients were evaluated using visual analogue scale (VAS), grip power, range of motion (ROM), and digital infrared thermography imaging (DITI). In the EG, electricity was applied for the MTENS device, while electricity was not applied in the CG. Results: A significant difference in pain reduction was observed between the EG and CG. In the EG, a significant difference in grip strength was also noticed before and after using the MTENS; patients showed significantly increased power grip and tip pinch. A significant difference was observed in pre-rest and post-test wrist ROM and DITI values.
Conclusion: MTENS is an appropriate procedure for patients with wrist pain.
Background: Neuromuscular electrical stimulation (NMES) is a physical modality used to activate skeletal muscles for strengthening. While voluntary muscle contraction (VMC) follows the progressive recruitment of motor units in order of size from small to large, NMES-induced muscle contraction occurs in a nonselective and synchronous pattern. Therefore, the outcome of muscle strengthening training using NMES-induced versus voluntary contraction might be different, which might affect balance performance.
Objects: We examined how the NMES training affected balance and proprioception.
Methods: Forty-four young adults were randomly assigned to NMES and VMC group. All participants performed one-leg standing on a force plate and sat on the Biodex (Biodex R Corp.) to measure balance and ankle proprioception, respectively. All measures were conducted before and after a training session. In NMES group, electric pads were placed on the tibialis anterior, gastrocnemius, and soleus muscles for 20 minutes. In VMC group, co-contraction of the three muscles was conducted. Outcome variables included mean distance, root mean square distance, total excursion, mean velocity, 95% confidence circle area acquired from the center of pressure data, and absolute error of dorsi/plantarflexion.
Results: None of outcome variables were associated with group (p > 0.35). However, all but plantarflexion error was associated with time (p < 0.02), and the area and mean velocity were 37.0% and 18.6% lower in post than pre in NMES group, respectively, and 48.9% and 16.7% lower in post than pre in VMC group, respectively.
Conclusion: Despite different physiology underlying the NMES-induced versus VMC, both training methods improved balance and ankle joint proprioception.
Background: The superimposed technique (ST) involves the application of electrical muscle stimulation (EMS) during voluntary muscle action. The physiological effects attributed to each stimulus may be accumulated by the ST. Although various EMS devices for the quadriceps muscle are being marketed to the general public, there is still a lack of research on whether ST training can provide significant advantages for improving quadriceps muscle strength or thickness compared with EMS alone.
Objective: To compare the effects of eight weeks of ST and EMS on the thicknesses of the rectus femoris (RF) and vastus intermedius (VI) muscles and knee extension strength.
Methods: Thirty healthy subjects were recruited and randomly assigned to either the ST or EMS groups. The participants underwent ST or EMS training for eight weeks. In all participants, the thicknesses of the RF and VI muscles were measured before and after the 8-week intervention by ultrasonography, and quadriceps muscle strength was measured using the Smart KEMA tension sensor (KOREATECH Co., Ltd.).
Results: There were significant differences in the pre- and post-intervention thicknesses of the RF and VI muscles as well as the quadriceps muscle strength in both groups (p < 0.05). RF thickness was significantly greater in the ST group (F = 4.294, p = 0.048), but there was no significant difference in VI thickness (F = 0.234, p = 0.632) or knee extension strength (F = 0.775, p = 0.386).
Conclusion: EMS can be used to improve quadriceps muscle strength and RF and VI muscle thickness, and ST can be used to improve RF thickness in the context of athletic training and fitness.
Skin protects the body by mediating various immune responses against exogenous substances including bacteria, fungi, and viruses, in addition to its predominant role as a physical barrier. Despite the significant protection offered via various mechanisms, bacterial infection of the skin is one of the most common skin diseases in veterinary medicine. This study demonstrated the structural and immunological changes in the skin during infections with Pseudomonas aeruginosa and Staphylococcus pseudintermedius using skin explants from four healthy beagles. Skin structure was generally well preserved in uninfected controls, but defects in skin structure, including injury of keratinocytes and dermal–epidermal junctional disruption, were identified when skin explants were exposed to P. aeruginosa and S. pseudintermedius. On exposure to P. aeruginosa, marked linear cleft formation was noted along with acantholysis along the basal layer after 24 hours of culture. In addition to the defects in the skin structure, mRNA expression levels of the AMPs cBD103 and S100A8 were decreased, which was confirmed by immunohistochemical staining. Taken together, these results suggest that our ex vivo canine skin model is a research tool for investigating bacterial skin infections in dogs.
본 연구의 목적은 경두개직류자극(tDCS) 유무에 따른 골프 퍼팅 수행력을 비교 분석하는 것이 었다. 본 연구에 참여한 대상자는 신체 건강한 대학 골프선수 10명이 참여하였다. 1대의 SAMPutt basic unit과 tDCS를 이용하여 퍼팅 시 발생하는 운동학적 자료 수집 및 분석을 실시하였다. 통계분석은 경두개 직류자극 유무에 따른 퍼팅 수행력을 비교하기 위해 paired t-test를 실시하였으며, 통계적 유의수준은 .05 로 설정하였다. 연구결과, 평지 퍼팅에서 FA와 BS가 통계적으로 유의한 차이가 나타났으며, 훅 2° 퍼팅에 서 IS가 통계적으로 유의하게 나타났다. 본 연구결과를 바탕으로 추후 경두개직류자극이 퍼팅 시 신체 균 형 유지와의 관련성을 규명하는 연구가 필요할 것으로 생각된다.
Background: Stroke patients have dosiflexor weakness. Functional electrical stimulation (FES) for motor and sensory threshold stimulation has been applied to patients with stroke.
Objectives: To investigate effects of FES intervention for motor and sensory threshold on balance and gait in subacute patients with stroke.
Design: A randomized controlled trial.
Methods: In all, 34 patients with subacute stroke were recruited and randomly assigned to the motor threshold (MTG, n=17) and sensory threshold group (STG, n=17). The measured variables were static balance (BioRescue), dynamic balance (BBS), and gait (TUG test). The study period was 5 weeks, twice a day, 5 days a week.
Results: There was a significant difference in all variables except the speed variable (open eye Romberg test) after the intervention; MTG improved more significantly except for the speed variable of the Romberg test (open eye). BBS score increased significantly only in the MTG group after the intervention, and the increase was more significant in the MTG group than in the STG group. The TUG test significantly decreased in both groups after the intervention, and the decrease was more significant in the MTG group than in the STG group.
Conclusion: FES for motor threshold applied to patients with subacute stroke appears to be more effective in improving balance and gait ability than FES for sensory threshold.
본 연구에서는 전기 근육 자극(electrical muscle stimulation, EMS)에 사용되는 기존의 하이드로겔 패드의 단 점인 사용 편의성, 쾌적성 등을 보완할 수 있는 e-textile (electronic textile)을 이용한 전기 근육 자극(electrical muscle stimulation, EMS) 패드인 EMSCT (electrical muscle stimulation conductive textile)를 연구를 하고자 하 였다. SWCNT (Single-Walled Carbon Nanotube)와 의 농도 및 함침 공정 횟수를 변수로 하여, EMSCT는 5 가지 직물(라디론, 네오프렌, 스판쿠션, 폴리100%, 베르가모)에 전도성을 부여하여 실험이 진행되었다. SWCNT (Single-Walled Carbon Nanotube)와 을 이용한 패딩 공정을 거쳤으며, 교류 측정 결과 하이드로겔 과 가장 유사한 교류를 나타내는 것은 SWCNT: = 2:1의 베르가모 원단이라는 결과를 얻을 수 있었다. 또한, 편 의성, 사용성, 심리적 만족성에 관한 사용성 평가를 통해 기존 하이드로겔 패드에 비해 EMSCT가 좋은 사용성을 가진다는 결과를 얻을 수 있다.
Background: Patients with dysphagia after stroke are treated with neuromuscular electrical stimulation (NMES), but its effect on masseter muscle thickness and bite force in the oral phase is not well known.
Objectives: To investigated the effect of NMES on masseter muscle thickness and occlusal force in patients with dysphagia after stroke.
Design: Two group, pre-post design.
Methods: In this study, 25 patients with dysphagia after stroke were recruited and allocated to either the experimental or the control groups. Patients in the experimental group were treated with NMES to the masseter muscle at the motor level for 30 minutes and were additionally treated with traditional swallowing rehabilitation for 30 minutes. In contrast, patients in the control group were only treated with traditional swallowing rehabilitation for 30 minutes. Masseter muscle thickness was measured using ultrasonography before and after intervention, and bite force was measured using an bite force meter.
Results: The experimental group showed significant improvement in masseter muscle thickness and bite force compared to the control group.
Conclusion: NMES combined with traditional dysphagia rehabilitation is effective in improving masseter muscle thickness and bite force in patients with dysphagia after stroke.
Background: Stroke patients have weak trunk muscle strength due to brain injury, so a single type of exercise is advised for restoring functionality. However, even after intervention, the problem still lies and it is suggested that another intervention method should be applied with exercise in order to deal with such problem.
Objectives: To Investigate the effect of bridge exercise combined with functional electrical stimulation (FES) on trunk muscle activity and balance in stroke patients.
Design: Randomized controlled trial.
Methods: From July to August 2020, twenty stroke patients was sampled, ten patients who mediated bridge exercises combined with functional electrical stimulation were assigned to experiment group I, and ten patients who mediated general bridge exercises were assigned to experiment groupⅡ. For the pre-test, using surface EMG were measured paralyzed rectus abdominis, erector spinae, transverse abdominis/internal oblique muscle activity, and using trunk impairment scale were measured balance. In order to find out immediate effect after intervention, post-test was measured immediately same way pre-test.
Results: Change in balance didn’t show significant difference within and between groups, but muscle activity of trunk was significant difference rectus abdominis and erector spinae within groups I (P<.01), also between groups was significant difference (P<.05).
Conclusion: Bridge exercise combined with FES could improve trunk function more effectively than general bridge exercise due to physiological effect of functional electrical stimulation.
Background: The spinal nerves, which start at the lumbar level, are connected to the nerve innervation in the knees. Currently, there is a lack of research on the treatment of knee pain through lumbar mobilization.
Objectives: To investigate the effects of lumbar joint mobilization (LJM) and transcutaneous electronic nerve stimulation (TENS) on proprioception and muscular strength in volleyball players with chronic knee pain.
Design: Two group pre-posttest.
Methods: A total of 26 professional volleyball players with chronic knee pain were allocated to the LJM (n=13) and TENS (n=13) groups. In the LJM group, grade III - IV amplitude was applied 3 times for 1 minute (80 times per minute) at the affected lumbar (L2-3) facet joint in the prone position. In the TENS group, the TENS treatment device was used to directly apply or 15 minutes to the area of chronic knee pain (100 Hz, 150 ㎲). Proprioception was measured by knee flexion and extension angles, and muscle strength was evaluated using an isokinetic test. Measurements were taken before and after interventions.
Results: In the eye opened conditiond, proprioception significantly increased during both knee extension and flexion after LJM, while only knee extension was significantly increased in the TENS group. There was also a significant difference in knee extension between the two groups. In the eye close conditiond, proprioception was significantly improved only during knee extension in the LJM group, and the difference in knee extension between the groups was also significant (P<.05). The maximum torque of the affected knee joint was significantly improved at 60°/sec in both groups (P<.05); however, there was no difference between the two groups. There was no significant difference in the maximum flexion torque within or between the groups.
Conclusion: This study suggests that LJM improved proprioception and muscular strength in volleyball players with chronic knee pain.
본 연구는 원통형 종이포트 토마토 육묘시 Diniconazole의 처리방법이 도장억제 및 근권발달에 미치는 영향을 검토하기 위하여 수행되었다. 그 결과, 엽면적, LAR, 초장, 충실도, 생체중, RGR 및 R/S 에서 시험구간 유의한 차이를 보였다. 동일한 농도를 처리했을 경우, 근권부와 지상부의 흡수도 차이로 인해 저면관수가 엽면살포에 비해 도장억제에 효과적이었다. 저면관수는 엽면시비의 10분의 1의 농도만으로도, 20~30%정도의 동일한 도장억제 효과를 얻을 수 있었다. 디니코나졸 처리에의한 근권부 반응이 흥미로웠는데, 저면관수시 총근장, 근권부피, 평균 근경 및 근단수가 증가하였다. 특히, 0.3mm 이하의 초미세근이 감소하고 0.3~0.6mm의 세근이 증가하였다. 따라서 원통형 종이포트 육묘시 저면관수를 하는 것이 기존 엽면시비에 비해 사용량이 적으면서도 도장억제 및 근권부 활착률을 높힐 수 있을 것으로 판단된다.
본 연구는 토마토 공정묘 생산 시 생장 억제를 위한 적정 brushing 소재를 구명하기 위해 수행하였다. 토마토 종자를 상업적 공정육묘용 상토가 충진된 40구 플러그 트레이에 파종하였으며, 파종 후 18일째부터 brushing 자극을 처리하였다. Brushing 소재는 연질 아크릴, 폴리프로필렌, 직조필름 소재를 이용하여 brushing 처리를 하였으며, 대조구로 무처리구와 diniconazole을 엽면살포 처리하였다. 연질 아크릴 처리에서 초장이 유의적으로 가장 짧았고, 경경은 가장 두꺼웠다. 잎의 크기는 diniconazole 처리에서 가장 낮았으나, SPAD값은 가장 높게 나타났다. 연질 아크릴 처리에서 T/R율이 가장 낮고, 왜화율과 충실도가 가장 높게 나타났다. 결과적으로, brushing 자극 처리를 위해 연질 아크릴 소재를 이용하는 것이 diniconazole 처리 보다 왜화율이 높아 도장 억제에 유리하며 묘 소질이 우수한 묘를 생산하는데 적절할 것으로 판단된다.
Background: Stroke patients experience multiple dysfunctions that include motor and sensory impairments. Therefore, new intervention methods require a gradational approach depending on functional levels of a stroke patient’s activity and should include cognition treatment to allow for a patient’s active participation in rehabilitation.
Objects: This study investigates the effect of integrated revision of electrical sensory stimulation, which stimulates somatosensory and action observation training, which is synchronized cognition intervention method on stroke patients’ functions.
Methods: Twenty-one stroke patients were randomized into two groups. The two groups underwent twenty minutes of intervention five times a week for three weeks. This study used an electromyogram to evaluate symmetric muscle activation of lower extremities and muscle onset time when performing sit to stand before and after intervention. A weight-bearing ratio was used to evaluate the weight-bearing of the affected side in a sit to standing. To evaluate sit to stand performance ability, this study performed five timed sit to stand tests.
Results: The two groups both showed statistically significant improvement in muscle onset time of lower extremity, static balance ability in a standing position, and sit to stand performance after the intervention (p < 0.05). In addition, the action observation and synchronized electrical sensory stimulation group showed significant improvement in symmetric muscle activation of lower extremities and weight–bearing ratio of the affected side (p < 0.05).
Conclusion: action observation and synchronized electrical sensory stimulation (AOT with ESS) can have positive effects on a stroke patient’s sit to stand performance, and the intervention method that provides integrated AOT with ESS can be used as new nervous system intervention program.
Osteoarthritis is a disorder characterized by a loss of cartilage as common aging-associated disease in humans and animals. However, unlike human clinical trials, investigational studies in pet animals are constrained by a lack of interest and funds. In addition, pet owners would often prefer the lowest cost method to treat arthritis of pet animals. Here, we report the outstanding and inexpensive way to prepare chondrocytes for cartilage repair using rabbit adipose derived mesenchymal stem cells (MSCs). This study focused on the development and enhancement of pre-chondrogenic condensation under external electric fields even without additional growth factors. We found that highly compact structures were formed within 3 days in micromass cultures of rabbit MSCs under electrical stimulation (ES), showing increased COL2A1 gene expression compared with their control 3D micromass cultures and 2D monolayer cultures. We further found that ES enhanced the production of proteoglycan, a highly produced extracellular matrix component in chondrocytes. Collectively, these results provide the commercial potential of electrical stimulation driving chondrogenesis of mesenchymal stem cells for repair of cartilage, which is a budget-friendly regimen.