검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study interrogated multi-layer heterojunction anodes were interrogated for potential applications to water treatment. The multi-layer anodes with outer layers of SnO2/Bi2O3 and/or TiO2/Bi2O3 onto IrO2/Ta2O5 electrodes were prepared by thermal decomposition and characterized in terms of reactive chlorine species (RCS) generation in 50 mM NaCl solutions. The IrO2/Ta2O5 layer on Ti substrate (Anode 1) primarily served as an electron shuttle. The current efficiency (CE) and energy efficiency (EE) for RCS generation were significantly enhanced by the further coating of SnO2/Bi2O3 (Anode 2) and TiO2/Bi2O3 (Anode 3) layers onto the Anode 1, despite moderate losses in electrical conductivity and active surface area. The CE of the Anode 3 was found to show the highest RCS generation rate, whereas the multi-junction architecture (Anode 4, sequential coating of IrO2/Ta2O5, SnO2/Bi2O3, and TiO2/Bi2O3) showed marginal improvement. The microscopic observations indicated that the outer TiO2/Bi2O3 could form a crack-free layer by an incorporation of anatase TiO2 particles, potentially increasing the service life of the anode. The results of this study are expected to broaden the usage of dimensionally stable anodes in water treatment with an enhanced RCS generation and lifetime.
        4,000원
        3.
        2005.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to investigate the possibility of application for water treatment using the zeocarbon. The zeocarbon was mixture of zeolite and activated carbon. In general, the application of commercial zeocarbon to water treatment is difficult because of weak strength in water and the high pH value of effluents after water treatment. Therefore, we have modified the surface of zeocarbon. For the surface modification, we used the acid treatment to make surface functional group. As a result of modification, was created functional group on zeocarbon surface and was formed mesopore in zeocarbon. The surface modified zeocarbon was applied to removal of nitrogen. In removal experiments of nitrogen, removal efficiency was very high. And, strength of zeocarbon after water treatment and pH of effluents were stabilized. This indicates that the surface modified zeocarbon was easy to recover and reuse. Consequently, our results were shown the possibility of application for water treatment using the surface modified zeocarbon.
        4,000원
        4.
        2003.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To comparison the surface treatment methods of stone board materials, the results of Dorry's abrasive test were 23.4 for water-jet system and 18.9 for flame-burner system. Therefore abrasive hardness, the stone board materials by the water-jet system was greater than one by flame-jet system. As a result of Shore's hardness test, the stone board materials by water-jet system was twice greater than one by flame-jet system. Authors carried out microscopic observation to survey a defection of the composition minerals for two methods, but all of the both methods have not founded a defection. Therefore, the stone board materials by water-jet system was greater durability than one by flame-jet for the surface treatment methods.
        4,600원
        5.
        2013.04 서비스 종료(열람 제한)
        This study utilized atomic force microscopy (AFM) and nanoindentation methods to evaluate epoxy water-resistance and anti-corrosiveness. This study considered two different epoxy formulations to assess typical degradation characteristics of epoxy surfaces with regard to water-resistance and anti-corrosiveness. As a result, this study was able to clearly confirm changes in physical characteristics and performance tendencies regarding ozone oxidizing reactions.
        6.
        2011.07 KCI 등재 서비스 종료(열람 제한)
        This study investigated the application of experimental design methodology to optimization of conditions of air-plasma and oxygen-plasma oxidation of N, N-Dimethyl-4-nitrosoaniline (RNO). The reactions of RNO degradation were described as a function of the parameters of voltage (X1), gas flow rate (X2) and initial RNO concentration (X3) and modeled by the use of the central composite design. In pre-test, RNO degradation of the oxygen-plasma was higher than that of the air-plasma though low voltage and gas flow rate. The application of response surface methodology (RSM) yielded the following regression equation, which is an empirical relationship between the RNO removal efficiency and test variables in a coded unit: RNO removal efficiency (%) = 86.06 + 5.00X1 + 14.19X2 - 8.08X3 + 3.63X1X2 - 7.66X2 2 (air-plasma); RNO removal efficiency (%) = 88.06 + 4.18X1 + 2.25X2 - 4.91X3 + 2.35X1X3 + 2.66X1 2 + 1.72X3 2 (oxygen-plasma). In analysis of the main effect, air flow rate and initial RNO concentration were most important factor on RNO degradation in air-plasma and oxygen-plasma, respectively. Optimized conditions under specified range were obtained for the highest desirability at voltage 152.37 V, 135.49 V voltage and 5.79 L/min, 2.82 L/min gas flow rate and 25.65 mg/L, 34.94 mg/L initial RNO concentration for air-plasma and oxygen-plasma, respectively.