Recently, domestic fishing production of Japanese horse mackerel has been continuously decreasing. To achieve sustainable fishing of this species, it is essential to acquire its target strength (TS) for accurate biomass estimation and to study its ecological characteristics. To date, there has been no TS research using a broadband echosounder targeting Japanese horse mackerel. In this study, for the first time, we synchronized an underwater camera with a broadband frequency (nominal center frequency of 200 kHz, range: 160-260 kHz) to measure the TS according to the body size (16.8-35.5 cm) and swimming angle of the species. The relationship between Japanese horse mackerel length and body weight showed a general tendency for body weight to increase as length increased. The pattern of the frequency spectra (average values) by body length exhibited a similar trend regardless of body length, with no significant fluctuations in frequency observed. The lowest TS value was observed at 243 kHz while the highest TS values were recorded at 180 and 257.5 kHz. The frequency spectra for the swimming angles appeared to be flat at angles of –5, 0, 30, 60, 75, and 80° while detecting more general trends of frequency spectra for swimming angle proved challenging. The results of this study can serve as fundamental data for Japanese horse mackerel biomass estimation and ecological research.
In this study, the target strength for multi-frequency (38 kHz, 120 kHz, 200 kHz) of juvenile silverfish (Pleuragramma antarcticum) was estimated using by the KRM (Kirchhoff-ray mode) model. The body shape of the silverfish was described by a picture and the body length of nine individuals ranged in 1.8 cm to 8.8 cm. The maximum TScm according to the total length for the constant term (b20) was – 92.93 dB at 38 kHz, – 86.63 dB at 120 kHz, and – 85.89 dB at 200 kHz, respectively. The averaged TScm according to total length for the constant term (b20) was – 100.0 dB at 38 kHz, – 93.0 dB at 120 kHz, and – 106.9 dB at 200 kHz, respectively.
We measured the target strength according to the swimming tilt angle and size change for Pacific herring at the frequency of 70 kHz as the basic database in order to estimate its abundance as well as density in the survey area using the hydroacoustical method. The number of the sample used in this study was 14 individuals, and its size distribution by fork length ranged between 20.3 and 29.8 cm and wet weight was measured between 187.6 and 269.9 g. The variation of TS according to the swimming angle (-30~30°) was measured between 10.3 and 18.8 dB in frequency range, the highest value was measured at head-down of Pacific herring in the tilt angle range between 5 and 9 deg. of its swimbladder. The relationship between TS–FL of herring was the same as TS = 20log10 (FL) – 66.79 when its swimming tilt angle in the daytime (3.8 ± 6.0°) and nighttime (-3.2 ± 13.6°), respectively.
Rockfish was a commercially important fish specie in marine ranching areas in Korea. To estimate density and biomass of rockfish using acoustic method, target strength (TS) information is required on the species. This study measured TS dependence on tilt angle and size on 14 live rockfish individuals at 38, 70, and, 120 kHz by ex-situ measurement (tethered method) and acoustic scattering model (Krichhoff ray mode, KRM). The swimbladdered angle ranged from 18 to 30˚ (mean ± s.d. = 26 ± 4˚ ). The mean TS for all individuals was highest -35.9 dB of tilt angle -17˚ at 38 kHz, -35.4 dB of tilt angle -25˚ at 70 kHz, and -34.9 dB of tilt angle -22˚ at 120 kHz. The ex-situ TS-total length (TL, cm) relationships were TS38kHz = 20log10(TL) - 67.1, TS70kHz = 20log10(TL) - 68.6, and TS120kHz = 20log10(TL) - 69.9, respectively. The model TS-total length (TL, cm) relationships were TS38kHz = 20log10(TL) - 66.4, TS70kHz = 20log10(TL) - 67.0, TS120kHz = 20log10(TL) - 67.0. The two measurements between the ex-situ TS and KRM model for TS-tilt angle and fish size were found to be significantly correlated.
Acoustic target strength (TS) measurement and theoretical acoustic scattering models were applied to estimate the TS for assessing the fish biomass. TS measurement was made of ex situ sailfin sandfish Arctoscopus japonicus at 70 and 120 kHz, and then compared to backscatter model prediction. The live sandfish was tethered in seawater using monofilament lines. Measurements were made versus incidence angle, −50° to 50° relative to dorsal aspect directions. Distorted wave Born approximation (DWBA) model was used to calculated TS pattern. The TS values of sandfish (body length: 16.2 cm) at 70 and 120 kHz were ‒66.94 dB and ‒64.45 dB, respectively, and were about 20 dB lower than TS of other fishes in Korea waters. These TS levels were distributed within the range of the theoretical TS. Ex situ measurement and theoretical TS may be applied to improve acoustical detection and biomass estimation of the sandfish, and is necessary to measure with various lengths.
Target strength (TS) information is an important parameter that estimates the detection, distribution, and abundance of Aurelia aurita. In order to investigate the biological TS of jellyfish, some factors such as size (bell diameter), tilt angle, pulsation, and symbion should be known. In the ex situ TS measurements, the tilt angles and pulsation from synchronized swimming behavior of four live A. aurita (bell diameters in the air: 54.2 ~ 94.2 mm) were measured with the acoustic data at 70 kHz. The reduced target strength (RTS) of A. aurita was found to change ranged from 13.4 ~ 16.5 dB according to the incidence angles from –30° to 24°. When the change rate of bell diameter in the water was 0.2, the TS value showed a 7.2 dB change. These results could be utilized as an important data to understand the acoustic characteristic scattering of A. aurita.
Morphological properties of dark banded rockfish (Sebastes inermis) were analysed to investigate its acoustic scattering characteristics. Total of 18 live samples was prepared for X-ray photos and collected morphological coordinates of their body and swim bladder shapes. Kirchhoff-ray mode model was used to calculate acoustic scattering pattern for broad-band frequency range. Inclination of swim bladder ranged from 17 to 30 and the averaged value was about 25.2° (S.D.(standard deviation)=3.15). There were no any tendency of increase or decrease in volume and area ratio of swim bladder to fish body and ranged from 2.2 % to 4.43 % and 14.85 % to 21.31 %, respectively. The averaged value of volume and area ratio was 3.13 % (S.D.=0.52) and 17.6 % (S.D.=1.5). b20 values were –69.01 for 38 kHz, –69.83 for 70 kHz, –70.17 for 120 kHz and -70.93 for 200 kHz, recpectively. Broadband acoustic patterns of dark banded rockfish for 20 ~ 200 kHz were similar among samples and they reflected size and morphological properties of fish species.
Although ex situ target strength (TS) measurements using dual- and split-beam systems have become the primary approach of estimating fish abundance, theoretical model estimation is a powerful tool for verifying the measurements, as well as for providing values when making direct measurements is difficult. TS values for 20 samples of live bambooleaf wrasse (Pseudolabrus japonicus) whose target length (TL) ranged between 13.7 and 21.3 cm were estimated theoretically using the Kirchhoff-ray mode model, and the TS values for 18 live fish samples were additionally measured at ~0° tilt angle to the swimming aspect using a tethered method at a frequency of 120 kHz to verify the theoretical values. The digitizing intervals used to extract the fish body and swim bladder morphology in the X-ray photographs significantly affected the calculated TS patterns, but variations based on the speed of sound and density ratio values for the general range of fish flesh were relatively small (within 1 dB). Close agreement was observed between the measured and theoretical TS values, and the correlation between the average TS and body length of the fish could be calculated accurately as <TS120kHz>= 20logTL (cm) –71.6 using the theoretical method.
음향 표적강도는 잠수함의 생존성을 보장하기 위한 중요한 설계 고려 요소이다. 잠수함이 대형화 됨에 따라 음향 표적강도 저감을 위한 대표적인 방법으로 알베리히 무반향 코팅재가 널리 사용되고 있다. 본 논문에서는 규칙적으로 배열된 알베리히 무반향 코팅재 단위 셀에 대해 유한요소법을 이용하여 음압 투과반사 계수를 해석하였다. 해석 결과는 문헌의 실험결과와 비교 검증하였다. 또한, 잠수함의 음향 표적강도 계산시 해석된 코팅재의 입력 임피던스를 이용하여 반사계수를 고려하였다. 마지막으로 알베리히 무반향 코팅재 적용에 따른 음향 표적강도 감소 효과(Case 1: 10dB, Case 2: 6dB)를 확인하였다.
Acoustical backscattering characteristics of Japanese anchovy can be estimated by Kirchhoffray mode model (KRM model) due to estimate exact body and swim-bladder shape of the fish, the samples were rapidly frozen by dry-ice and alcohol. X-ray photos for ventral and lateral direction for 6 samples were taken and the 3D coordinates of the body swim-bladder were estimated by digitizing from the photos. The angles between the axis of body and swim-bladder were about 9˚ at 38kHz and 7˚ at 120kHz, 200kHz. General formula of TS and BL estimated were 〈 TS38kHz 〉=20logBL-67.3, 〈 TS120kHz 〉=20logBL-66.6, 〈 TS200kHz 〉=20logBL-67.0. As a result, we confirmed KRM model is very useful to estimate TS (Target Strength) for design of experiment and it also can be applied to estimate the abundance of Japanese anchovy distributed by 2 frequency difference method in the survey area.
Black porgy and fat greenling are commercially important fish species due to the continuously increasing demand in Korea. When estimating acoustically the fish length by a fish sizing echo sounder, it is of crucial importance to know the target strength (TS) to length dependence. In relation to these needs, the target strength experiments for live fishes were conducted in an acrylic salt water tank using two split-beam echo sounders operating at 70 and 120kHz. The target strength under well-controlled laboratory conditions was simultaneously measured with the swimming movement by digital video recording (DVR) system and analyzed as a function of fish length (L) and frequency (or wavelength λ). Equations of the form TS-alog (L)+blog (1)+c were derived for their TS-length dependence. The best fit regression of TS on fork length for black porgy was TS=20.62 log (L, m)-0.62 log (λ, m)-30.68 (r2=0.77). The best fit regression of TS on fork length for fat greenling was TS=12.06 log (L, m)-5.85 log (λ, m)-22.15 (r2=0.44).
Acoustic side-aspect target strength (TS) of living Japanese anchovy (Engraulis japonicus) was measured at 120kHz during in situ experiments. The data were collected by lowering and horizontally projecting the splitbeam transducer into the anchovy school. For analysis and interpretation of the side-aspect TS data, acoustic theoretical model, based on the fish morphology, and dorsal-aspect TS data were used. Total length of the anchovy ranged from 6.6 to 12.8cm (mean length 9.3cm). The side-aspect TS distributed between -40 and -55dB, has an obvious length dependency. The mean side-aspect TS of the anchovy was -47.8dB, and the TS was about 2dB higher than mean TS generated from dorsal-aspect measurements. With reference to maximum TS, the results of the side-aspect TS were distributed within the range of the theoretical and dorsal-aspect TS. Apparently these tendency indicates that side-aspect TS measured from the study is useful data. These in situ measurements of side-aspect TS can be applied to improve acoustic detection and estimates of the anchovy, and is necessary to measure with a various frequency and length for making enhance data.
Species of fish such as striped beakperch, bluefin searobin and konoshiro gizzard shad are commercially very important due to their high demand in the Korean market. When estimating acoustically the abundance of stocks for these species, it is of crucial importance to know the target strength (TS) to the length dependence. In relation to these needs, the TS experiments were conducted on three different species in an acrylic salt water tank using two split-beam echo sounders of 70 and 120 kHz. The TS for these three species under the controlled condition was simultaneously measured with the swimming movement by a DVR system and analyzed as a function of fish length (L) and frequency (or wavelength λ). The equation of the form TS=a log (L)+b log (λ)+c was derived for their TS-length dependence. The best fit regression of TS on fork length for striped beakperch was estimated as TS=35.67 log (L, m) -15.67 log (λ, m) -46.69 (r2=0.78). Furthermore, the best fit regression of TS on fork length for konoshiro gizzard shad was shown to be TS=25.85 log (L, m) -5.85 log (λ, m) -32.22 (r2=0.51). The averaged TS for 12 bluefin searobins with a mean length of 24.36cm at 70 kHz was analyzed to be -41.55dB. In addition, the averaged tilt angle obtained simultaneously by a DVR system with TS measurements for 27 konoshiro gizzard shads swimming within an acrylic salt water tank was estimated at -2.7˚.
The indirect target strength (TS) estimation method which uses the Kirchhoff ray mode model (KRM model) was discussed to apply for a biomass estimation in the water of mixed species. TS of 25 live scorpion fishes for 120kHz were measured by a tethered method and of others dominant 5 species in the marine ranching ground of Jeju coastal water including a scorpion fish were also estimated by KRM model. The measurement TS of scorpion fish well agreed with the theoretical values and the standard formula of scorpion fish was estimated as TS120kHz=20Log (L)-72.9 (r2=0.67). TScm values estimated on trial to each sample of dominant 5 species were from -69.3dB to -75.1dB at 120kHz and they were in the general range of swimbladdered fish. It was clarified that TS by KRM model can be used to estimate fish biomass estimation by increasing a sample number and is more effective under the condition that there is rare TS information for inhabiting species in mixed-species area.
Assessment and management of fisheries abundance in fresh water like a river or a lake is very important to maintain fisheries itself as well as tourist industry even if their scale is not much large. The species for catch in fresh water are mainly a mandarin fish, a carp, an eel, and others. Because oriental river prawn is a main prey of these species and the change in its abundance is directly related to their abundance change in fresh water, information on the abundance and distribution of the species are necessary. Hydroacoustic survey is known to one of the efficient method among several methodology. Information on acoustic target strength is key parameter to estimate abundance for acoustic survey. In this study, measurements on oriental river prawn, Macrobrachium koreana, were conducted for two high frequencies(200kHz and 420kHz) with tilt angle using automatic rotating system. The results of acoustic target strength obtained from the experiment were compared with those of acoustic scattering model, Distorted Wave Born Approximation(DWBA) model. For 200kHz, the result of acoustic target strength experiments was expressed in terms of the averaged target strength dependence on the body langth(BL, cm) as a following relationship; 〈 TS200kHz 〉 = 45.9log(BL) - 107.4. These results provide basic information for studying acoustic target strength and conducting acoustic survey of oriental river prawn.