Coal tar pitch is a product with high carbon content and aromatic compounds. Modified coal tar pitch is a high quality raw material for the preparation of intermediate phase pitch, needle coke, carbon microspheres, et al. In this paper, modified coal tar pitch was used as raw material, nitrogen was used as protective gas, and thermal conversion was carried out at constant temperatures (370, 390, 410, 420 °C). Polarized light microscopy, SEM, elemental analysis, FTIR spectroscopy, Raman spectroscopy and XRD diffraction combined with split-peak fitting were used to characterize the microstructures of the thermal transformation products. The results showed that the Iar and CH3/ CH2 contents of the products increased with the gradual increase of the thermal conversion temperature, and the aromatic content increased. And the higher the temperature at the same heating rate, the more the ideal graphite microcrystal content, and the defective graphite microcrystals are converted into ideal graphite microcrystals during the thermal conversion process. When the reaction temperature exceeds 390 °C, the microstructure of the thermal transformation products is anisotropic spheres, and the small spheres fuse with each other and tend to be basin-like and mosaic structure as the temperature increases.
The team has studied the relationship between the ability of the coals to be dissolved in crude anthracene oil and their composition. The coal samples taken from different deposits in Russia and Mongolia were characterized by different stages of metamorphism and tested by the Fourier transform infrared spectroscopy and Carbon-13 nuclear magnetic resonance. The data of a correlation analysis enabled us to find out that an amount of aromatic structures in coal macromolecules provided the main influence on the thermal dissolution of the coals. The middle-rank coals had the highest rates of coal organic matter transfer to liquid products. The data showed that the dissolution process was accompanied by destruction of weak bonds among aliphatic groups. The amount of methylene groups in the aliphatic part of coal macromolecules had a direct impact on conversion of the coal organic matter into soluble products.
Modified pitch A (MPA) and modified pitch B (MPB) were prepared by oxidative polymerization and thermal polycondensation reaction with refined pitch as the raw material, respectively. The toluene soluble components (TS-1 and TS-2) were obtained by solvent extraction from MPA and MPB, separately. The Flynn-Wall-Ozawa method and Kissinger-Akahira- Sunose method were used to calculate the pyrolysis activation energy of TS. The Satava- Sestak method was used to investigate the pyrolysis kinetic parameters of TS. Moreover, the optical microstructure of the thermal conversion products (TS-1-P and TS-2-P) by calcination shows that TS-1-P has more contents of mosaic structure and lower contents of fine fiber structure than TS-2-P. The research result obtained by a combination of X-ray diffraction and the curve-fitting method revealed that the ratios of ordered carbon crystallite (Ig) in TS-1-P and TS-2-P were 0.3793 and 0.4417, respectively. The distributions of carbon crystallite on TS-1-P and TS-2-P were calculated by Raman spectrum and curve-fitting analysis. They show that the thermal conversion product of TS-2 has a better graphite crystallite structure than TS-1.
Perfluorinated sulfonic acid ionomers (PFSAs) have been used as cationic membrane materials for polymer electrolyte fuel cells, redox flow batteries. PFSAs exhibit high ionic conductivity and chemical toughness. Unfortunately, it is difficult to tune fundamental characteristics of commercially available PFSA membranes. On the other hand, protonated PFSA emulsion in water-alcohol mixture is useful in making modified PFSA membranes. The formation of the PFSA membranes, however, requires additional steps such as NaCl treatment, water treatment, and drying. These processes act as rate-determining steps for PFSA membrane fabrication. In this study, a simple salt conversion process is achieved in the PFSA emulsion. The process contributes to enhanced morphological transition and fast proton transport through the resulting membranes.
In the present, the focus is on the synthesis of nanostructured TiC/Co composite powder by the spray thermal conversion process using titanium dioxide powder has an average particle size of 50 nm and cobalt nitrate as raw materials. The titanium-cobalt-oxygen based oxide powder prepared by the combination of the spray drying and desalting methods. The titanium-cobalt-oxygen based oxide powder carbothermally reduced by the solid carbon. The synthesized TiC-15wt.%Co composite powder at 1473K for 2 hours had an average particle size of 150 nm.
In the present study, the focus is on the synthesis of titanium carbide/cobalt composite powder by the spray thermal conversion process using metallic salt solution as the raw materials. Two types of oxide powders of Ti-Co-O system were prepared by the spray drying of two types of metallic salt solutions : titanium chloride-cobalt nitrate and powder-cobalt nitrate solutions. These oxide powders were mixed with carbon black, and then these mixtures were carbothermal reduced under a flowing argon atmosphere. The changes in the phase structure and thermal gravity of the mixtures during carbothermal reduction were analysed using XRD and TG-DTA. In the case of using the titanium chloride-cobalt nitrate solution, it could not be obtained TiC/Co composite powder due to contamination of the impurities during the spray drying of the solution. However, in tile case of using the powder-cobalt nitrate scullion, TiC-15 wt. %Co composite powder could be synthesized by the spray thermal conversion process. The synthesized TiC-15 wt. %Co composite powder at 120 for 2 hours has average particle size of 150 nm.
This study examined the catalytic destruction of 1,2-dichlorobenzene on V2O5/TiO2 nanoparticles. The V2O5/TiO2 nanoparticles were synthesized by the thermal decomposition of vanadium oxytripropoxide and titanium. The effects of the synthesis conditions, such as the synthesis temperature and precursor heating temperature, were investigated. The specific surface areas of V2O5/TiO2 nanoparticles increased with increasing synthesis temperature and decreasing precursor heating temperature. In addition, the removal efficiency of 1,2-dichlorobenzene was promoted by a decrease in heating temperature. However, the removal efficiency of 1, 2-dichlorobenzene was decreased by an anatase to rutile phase transformation at temperatures 1,300℃.