검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 선박의 우수한 운항 성능과 쾌적한 승선감의 확보를 위해, 부경대학교 실습선인 가야호를 대상으로 해상상태, 선수 각 조건, 선속, 그리고 선내 위치별로 수행된 뱃멀미 발현에 관한 5차에 걸친 설문조사 결과와 선체운동해석법(Strip Method)에 기초한 수치계산을 통해서 얻은 계산결과를 비교, 분석하였다. 이를 통해 많은 수의 학생이 승선하는 실습선의 거주구역 배치에 대한 타당성 검증과 함께 항해 중 멀미도를 낮출 수 있는 침로와 선속의 결정에 도움이 될 것이다. 본 연구에 의하면 해상상태가 거칠수록 전체 멀미비율이 높게 나타났으며, 선내 위치별로는 선체의 중량중심에서 멀리 떨어져 있는 선교와 거주구역에서 수직가속도의 가중치가 높았고 멀미비율도 높게 나타났다. 그리고 선수파에 비해 횡요시 수직가속도의 가중치가 높게 나타났다. 멀미도 조사와 MSI 계산의 비교에서는 운동 수직가속도가 증가하면, 상대적으로 멀미도도 증가하고, 수직가속도가 증가하는 구역과 멀미도 발생구역이 일치하였다.
        4,000원
        2.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 실습선 가야호를 대상으로 하여 파랑 중 운동성능을 평가하였다. 그리고 쾌적한 승선감을 확보하기 위하여 실제 해상에서 운항중인 선박의 선내 위치별 수직가속도 성분을 선체운동 계산 기법을 통해서 구하고, 수직가속도 스펙트럼을 이용하여 가야호의 선속변화에 따른 가속도 계산 결과를 뱃멀미 지수(MSI; Motion Sickness Incidence)의 가이드라인과 비교 검토하여 멀미의 정도를 표시하였다. MSI 계산 결과는 선속이 5 knots, 10 knots, 12 knots로 커지는 순서대로 수직가속도의 가중치가 높게 나타나며, 입사각은 180°와 150°에 비해 선수사파인 120°의 경우에 수직가속도의 가중치가 높게 나타났다.
        4,000원
        3.
        2009.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To compare and evaluate the suitability and comfort levels of the environment on board a stern trawl training ship, KAYA(GT: 1737 tons, Pukyong National University), with the international standardization guide ISO 6954:2000(E), measurements of the hull vibration on accommodation areas and working areas of the training ship from July 8 to July 10, 2008 were completed upon KAYA's linear sea route. The vibrations along the z-axis were measured with the use of a 3-axis vibration level meter, which included a marine vibration card. Results show accelerations of the vibrations on the passenger's accommodation area to be 42.0-115.8(average: 78.0, standard deviation(SD): 21.0) mm/s2, which is largely below the permissible upper limit, but 75 % of the observation points exceeded the permissible lower limit of 71.5 mm/s2, indicating a comfortable environment. The accelerations of the vibration in a frequency of 10-24Hz lowering the visual performance were measured at 2.5-12.0(average: 7.6, SD: 3.1) mm/s2. The crew s accommodation area experienced vibration accelerations of 42.9-82.3(average: 93.1, SD: 53.1) mm/s2, which is generally below the permissible upper limit of 214.0 mm/s2, and 62.5% of the observation points did not exceed the permissible lower limit of 107.0 mm/s2, denoting a level of comfort. The acceleration of the vibration in a frequency of 10-24Hz were 4.7-28.3(average: 12.4, SD: 8.8) mm/s2. On the crew s working area the accelerations were measured at 86.9-153.9(average 119.3, SD 18.0) mm/s2. These values were generally below the permissible upper limit of 286.0 mm/s2 and only 12.5% of the observation points did not exceed the permissible lower limit of 143.0 mm/s2, the level at which a high level of comfort is maintained. The accelerations in frequency of 10-24Hz and 30Hz were 9.1-29.8 (average 13.8, SD= 4.5) mm/s2 and 8.9-13.7 (average 11.8, SD 2.1) mm/s2, respectively. In conclusion the boarding environment of the training ship was good in general although an improvement of the vibration condition partially needed on the crew s accommodation area near the engine room.
        4,000원
        4.
        2005.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The size of the ship's turning circle is influenced by various factors, such as block coefficient, underwater side shape, rudder area ratio, draft, trim and Froude's number. Most of them are already fixed on departure from a port. However, the ship's speed and the rudder angle are controllable factors which operations are able to change optionally during sailing. The DGPS measured the turning circles according to the ship's speed and the rudder angle. The maximum advances by slow and full ahead were 302m and 311m, and the maximum transfers were 460m and 452m, respectively. There occurs almost no difference in size of the turning circle by variation of the ship's speeds. When the rudder angles were changed to 10˚, 20˚ and 30˚, the maximum advances were 447m, 271m and 202m, and then also the maximum transfers 657m, 426m and 285m, respectively. The diameter of the tuning circle was decreased exponentially when the rudder angle was increased. The maneuverability was better when the direction of turning and propulsion of propeller are in the opposite direction rather than in the same one togetherm. The distance of the maximum transfer was always bigger than that of the maximum advance.
        4,000원
        5.
        2004.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The power and scale of 950 hPa typhoon "Maemi" which struck the shore of Gosung in Kyungnam Province was same as that of 951 hPa typhoon "Saraho" in 1959. For the purpose of getting the safety of training ship "KAYA", we anchored at Jinhae Bay with riding at two anchors paid out 8 shackles of cable respectively. By the way when wind force being over 30m/s, we could not keep the safety of the ship "KAYA" by means of the holding power of an anchor only. Just by using the main engine moderately, we were able to maintain the security of the ship. The holding the main engine moderately, we were able to maintain the security of the ship. The holding power of an anchor according to the way of anchoring, the quality of sea bottom, the direction and speed of wind and current, and the length of an anchor cable were analyzed. The obtained results are summarized as follows : 1. When riding at two anchors rather than lying at single anchor we could get a good holding power. 2. There was a big difference in holding power according to the quality of the bottom. 3. It would be best anchoring in a soft mud area than in any other place as possible. 4. It would also be desirable to set anchor shackles much more than equipment number prescribed in regulation in order to get safety of a ship providing against typhoon.
        4,000원