The object of this study is to feasibility assesment for co-digestion efficiency of food waste recycling wastewater(FWR) with thermal hydrolysis process dehydration cake (THP Sludge). As a result of THP pre-treatment experimental conditions to 160oC and 30 minutes, the solubility rate(conversion rate of TCOD to SCOD) of the THP sludge increased by 34%. And the bio-methane potential in the THP sludge increased by about 1.42 times from 0.230 to 0.328 m3 CH4/kg VS compared to the non-pre-treatment. The substrates of the co-digestion reactor were FWR and THP sludge at a 1:1 ratio. Whereas, only FWR was used as a substrate in the digestion reactor as a control group. The experimental conditions are 28.5 days of hydraulic retention time(HRT) and 3.5 kg VS/m3-day of organic loading rate(OLR). During the 120 days operation period, the co-digestion reactor was able to operate stably in terms of water quality and methane production, but the FWR digestion reactor deteriorated after 90 days, and methane production decreased to 0.233 m3 CH4/kg VS, which is 67% of normal condition. After 120 days of the experiment, organic loading rate(OLR) of co-digestion reactor was gradually increased to 4.5 kg VS/m3-day and operated for 80 days. Methane production during 80 days was evaluated to be good at the level of 0.349 m3 CH4/kg VS. As a result of evaluating the dehydration efficiency of the sludge before/after 150-180oC THP using a filter press, it was confirmed that the moisture content of the sludge treated before THP at 180oC was 75% and improved by 8% from 83-85% level. Therefore, it is expected that the co-digestion reactor of FWR and THP sludge will ensure stable treatment water quality and increase bio-methane production and reduction effect of dehydration sludge volume.
Acetate, propionate, butyrate are the major soluble volatile fatty acids metabolites of fermented food waste leachates. This work investigate the effects of volatile fatty acid on the growth rate and NH4-N, PO4-P removal efficiency of mixotrophic microalgae Chlorella vulgaris to treat digested food waste leachates. The results showed that acetate, propionate and butyrate were efficiently utilized by Chlorella vulgaris and microalgae growth was higher than control condition. Similar trends were observed upon NH4-N and PO4-P consumption. Volatile fatty acids promoted Chlorella vulgaris growth, and nutrient removal efficiencies were highest when acetate was used, and butyrate and propionate showed second and third. From this work it could be said that using mixotrophic microalgae, in this work Chlorella vulgaris, fermented food waste leachates can be treated with high efficiencies.
Response surface methodology (RSM) based on a Box-Behnken Design (BBD) was applied to optimize the thermal-alkaline pre-treatment operating conditions for anaerobic digestion of flotation scum in food waste leachate. Three independent variables such as thermal temperature, NaOH concentration and reaction time were evaluated. The maximum methane production of 369.2 mL CH4/g VS was estimated under the optimum conditions at 62.0°C, 10.1% NaOH and 35.4 min reaction time. A confirmation test of the predicted optimum conditions verified the validity of the BBD with RSM. The analysis of variance indicated that methane production was more sensitive to both NaOH concentration and thermal temperature than reaction time. Thermal-alkaline pretreatment enhanced the improvement of 40% in methane production compared to the control experiment due to the effective hydrolysis and/or solubilization of organic matters. The fractions with molecular weight cut-off of scum in food waste leachate were conducted before and after pre-treatment to estimate the behaviors of organic matters. The experiment results found that thermal-alkaline pre-treatment could reduce the organic matters more than 10kD with increase the organic matters less than 1kD.
This study was conducted to evaluate the effects of physical characteristics. Twelve specific odorous compounds and various sources of bacteria were tested via treatment of food waste using an ultra-thermophilic aerobic composting process. Food waste was mixed with seed material and operated for 47 days. During composting, the temperature was maintained at 80-90°C. The variations in O2, CO2 and NH3 production suggested typical microorganism-driven organic decomposition patterns. After composting, the concentrations of 12 specific odorous compounds other than ammonia did not exceed the allowable exhaust limits for odor. After composting, thermophiles represented 50% of all bacteria. After composting, the percentage of thermophile bacterial increased by 15%. Therefore, both stable composting operation and economic benefit can be expected when an ultra-thermophilic composting process is applied to food waste.
현재 국내에서 발생하는 음폐수의 해양투기 금지와 음식물류 폐기물의 에너지화 정책에 따라 유기성 폐기물의 혐기소화를 통한 바이오가스화 시설이 지속적으로 설치 및 운영되고 있다. 그동안 많은 연구와 운영 경험을 통해 유기성 폐기물의 바이오가스화 공정은 점차적으로 안정화되어 가고 있는 가운데, 해당 시설에서 발생하는 혐기소화여액에 대한 적정 처리가 전체 시설의 경제성에 큰 영향을 미치고 있다. 해외, 특히 유럽에서는 유기성 폐기물의 혐기소화여액을 대부분 퇴비 또는 비료로 활용하고 있으나 국내에서는 경작 면적 및 시비 시기 등에 대한 제약으로 인해 해외의 경우처럼 혐기소화여액을 퇴비 및 비료로 활용하는데 한계를 가지고 있다. 이에 대다수의 국내 음식물류 폐기물 바이오가스화 시설에서는 혐기소화여액을 별도의 폐수처리 후 하수처리장에 연계 처리하고 있으며, 고형물인 탈수케익은 일부 퇴비원료로 생산하고 있으나 이에 대한 수요 및 구매 매력도가 떨어져 무상공급 또는 유상처리하고 있는 실정이다. 이에 따라 탈수케익을 퇴비원료로 생산하는 대신 매립 또는 소각 처리로 전환하는 시설도 늘어나고 있다. 또한, 음식물류 폐기물의 혐기소화여액은 높은 질소 농도로 인해 하수처리장 연계수질에 따라 단순 응집침전부터 다단 고도처리까지 적용하여 처리하고 있어, 본 과제에서는 국내 음식물류 폐기물 바이오가스화 시설을 직접 방문 조사하여 각 시설의 폐수처리공정 성능 및 애로사항 파악을 통해 주요 연계수질 기준에 따른 최적 폐수처리공정 선정 Guideline을 도출하고자 하였다.
Since 2013, due to the London Convention prohibiting marine dumping of waste, many problems have occurred because food waste generated every day must be handled on the ground. Owing to recent institutional efforts and various technical studies for eco-friendly food waste treatment, various methods of treating food waste using insects have been studied. However, efficiency of Korean food waste treatment is in fact known to be low due to the high salinity of Korean food waste. In this study, we evaluated the treatment efficiency of food waste with various salt and moisture contents by the black soldier fly (Hermetia illucens). The results showed that the moisture content does not affect food waste treatment efficiency by the black soldier fly and the decomposition ability of food waste is good even at salt contents as high as 3%.
This study investigated the effect of NH4 + concentrations on microalgae growth by appling mixotrophic microalgae chlorella vulgaris in order to treat anaerobic digested food waste leachate. The growth rate and final microalgae growth were an order as 400 > 100 > 800 > 1300 mg-N/L. As results, The growth rate and final growth of microalgae were highest at ammonia concentration of 400 mg-N/L, On the other hand microalgae growth was inhibited when ammonia concentrations were over 800 mg-N/L. high concentrations of nitrogen over 800 mg-N/L interrupt the growth of microalgae. All of nitrogen and phosphorus were removed by microalgae at the ammonia concentration of 100~400 mg-N/L. In addition, when ammonia concentration was over 800 mg-N/L, the removal of nitrogen and phosphorus was limited mainly due to the microalgae growth limit. It was possible to treat anaerobic digested food waste leachate with mixotrophic microalgae when the ammonia concentration was controlled below 400 mg-N/L.
The purpose of this study was to evaluate the applicability of the microbial fuel cell for the combined treatment of food waste water and landfill leachate. Contents of the study was to develop a carbon-containing electrode material radially to maximize microbial attachment. Also to evaluate the electric energy production efficiency by combining the electrode surface coating technology. By using a microbial fuel cell organic matter and nitrogen removal efficiency is evaluated for the food waste water and landfill leachate. BET to evaluate the surface characteristics of the developing electrode (Brunauer Emmett Teller) To evaluate the coating adhesion through measurement and to evaluate the adhesion characteristics micro-organism Weighing. Excellent electrical conductivity in the development electrode platinum, cobalt, by coating a catalyst such as palladium and to evaluate the electric energy generation efficiency. Lab. scale reactor capacity is a 5 L, and to configure the cross-section and the oxidizing electrode as cathode sequentially added.
There is about 80% organic acid in the Food wastes leachate and organic acid can be used as organic carbon source for mixotrophic microalgae. The mixotrophic cultivation is that the combination of autotrophic and heterotrophic cultivation, where inorganic and organic carbon sources are used in their methabolism simultaneously. Therefore, this study investigated the effect of various organic acid on the microalgae when Food wastes leachate treatment. Chlorella vulgaris was used in this study, also NaHCO3 is supplied at all conditions as inorganic carbon source. In order to see the effect of organic carbon sources centrally, the carbon source conditions was set in 5 conditions - glucose known to have excellent effectiveness to increase of biomass productivity 1500 mg-COD/L, acetate 1500 mg-COD/L, isobutyrate 1500 mg-COD/L, propionate 1500mg-COD/L and the mixed organic acid (acetate, isobutyrate, propionate each 500 mg-COD/L). This study evaluated final biomass production, consumption of organic carbon, and N,P removal. In the result, the final biomass productivity by using glucose, acetate and isobutyrate is the highest level, followed by mixed organic acid and propionate. This is same aspect in N,P removal; the more rapid growth rate is, the more rapid N,P removal rate is. In the view of consumption of organic carbon, acetate make best use among organic acid.