본 연구는 대학에서 미래 일자리 지형변화에 대응하고 신기술분야의 주요 직무를 성공적으로 수행하기 위한 핵심 직무역량 도출을 국내 K대학의 사례를 통해 제시하는데 그 목적이 있다. 이를 위해 신기술분야 로 지능형드론 및 UAM 신기술분야를 선정하고 지역산업 및 K대학 역량 분석 기반으로 핵심직무역량 도출하고자 신기술분야 사례분석-신산업 분야 직무 역량 정의-산업체 전문가 의견 수렴(FGI)-대학 교원 인터뷰 및 설문조사-산업현장성 검증 단계로 연구를 진행하였다. 주요 연구결과는 다음과 같다. 첫째, 신 기술분야의 문헌 및 자료분석을 통해 직무역량을 정의하고 산업 전문가 의견수렴을 통해 직무기초역량 11개, 직무기술역량 43개, 및 초직능적 기술역량 28개 후보군이 도출되었다. 둘째, 관련 대학 교원을 대상 으로 설문조사 결과, 총 7개의 직무기초역량, 9개의 직무기술역량, 8개의 초직능적 기술역량으로 직무역 량 모델을 구성하였다. 셋째, 도출된 직무역량을 토대로 지역 산업 현장 검증을 설문조사를 실시하였고 최종 선정을 위해 각 역량에 대한 Needs Weight를 산출하였다. 그 결과 직무기초역량으로 ‘직업적 윤리 의식, 창의적 사고, 혁신적 사고, 융합적사고, 미래지향적 사고’, 초직능적기술역량은 ‘문제인식 및 문제해 결력, 자기주도성, 탐구정신, 협동 및 기술협력, 의사소통’ , 직무기술역량은 ‘이동체 제어기술, 설계/제작/ 제어능력, 무선통신기술, 센서시스템 활용기술, ICT 기술이해 및 활용’ 등으로 규명되었다. 결과를 토대로 신기술분야의 핵심직무역량 도출을 위한 시사점과 연구의 한계점을 제시하였다.
The purpose of this paper is to propose part management and standardization to reduce cost and increase compatibility of parts through standardization and standardization of parts to be applied to urban air mobility(UAM) systems, Personnel Air Vehicle(PAV), Vertical Take-Off and Landing (VTOL), and so on. In other words, parts used in the urban air transportation system must be verified from the initial design stage in accordance with the aviation standard, and a systematic management system for various parts must be established to secure stability and improve quality. Therefore, as a system similar to the aviation component management system, it should be thoroughly managed for urban aviation components.
This paper intends to consider the contents of the insufficient certification system of PAV and to propose the certification regulations. In other words, PAV is a combination of people and drones that should reflect commercial specifications among aviation certification specifications and civil aircraft regulations. However, the domestic PAV certification system is still lacking in clear detailed regulations, and the detailed certification system of PAV should be established as soon as possible. It is hoped that PAV certification system will be established first and applied in earnest in the future, and that the domestic PAV industry will be activated.
In this research, we have performed a T-test to see how the relationship between dependent variable or visual point level and independent variable or visual quantity is in order to clear up the correlation between pattern of visual point and visual quantity by the constituents of a view from a different visual point level and the results are as follows:
1) In case of the character of Mt.Uam landscape of the city, Uamsan is set as a fixed point and about a direction of view(D), the north is a datum point from which the range of direction is distributed within 180° westwardly and the visual range(R) is also within 2000m. An elevation is an average of 7.4° and the average story of the buildings is 3.85. Here the height of a story is about 4m so the average of the visual point difference is estimated at 15.4m.
2) The type of visual point is divided into the intersection group and the front of the highly used public buildings group. Double intersection types account for about 78.8%(52 spots) which forms a majority part of LCP.
3) The analysis of the difference of visual point level divided by eye level and that of the top of the buildings has been proved that there's a sharp difference resulted from t-test at 1% significant level. The significant difference of elevation from height difference(15.93m), however, has not been shown.
4) From the result of T-test about visual quantity by the elements of a view from a different visual point level, the visual quantity of mountain(VQM), sky(VQS), ground(VQG) is significant at about 1% each and that of building(VQB) is at about 5%. The difference in visual quantity of a mountain by the visual point level is at about 4% which can meet a marginal level of LCP necessary for evaluation of mountainscape.