검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study primarily aims to develop and evaluate a Smart Station - a novel underground pipeline measure system - to overcome the challenges of conventional surveying methods. METHODS : This study built two prototypes of the Smart Station. By reflecting issues revealed through the field tests of the first prototype, this study produced the second Smart Station prototype. The organization of the hardware units in the second prototype was reconfigured to maximize its usability for operators in the field. Furthermore, by developing the ‘Digital Twin X’, an integrated Smart Station management software suite, the second prototype was capable of 1) producing a digital workbook for field operators, 2) managing underground pipeline information, and 3) displaying 3-dimensional maps in and around an underground pipeline. The applicability of the second prototype was examined through three field tests conducted in one open space location, where no urban valley effects were expected, and two locations in a downtown area, with urban valley effects. Given the actual field installation of underground pipelines, this study collected data via both conventional surveying methods and the Smart Station to evaluate the performance of the Smart Station. Analyzing the field data, this study examined the data collection time and position accuracy of an underground pipeline measured by the Smart Station. RESULTS : The field test results revealed that both the conventional surveying method and the Smart Station produced similar performances in data collection time and measurement accuracy in the open space test location. However, in the case of downtown locations affected by urban valley effects, the Smart Station achieved 100 % measurement accuracy while the conventional surveying method achieved 93 % accuracy. It was also observed during the field test that no data were collected due to the constraints of the work schedule and various field conditions (e.g., weather and/or traffic congestion). The data collection times at the open space locations were 10 s for both the conventional surveying method and the Smart Station. However, the data collection times at the downtown locations appeared to be 10 s and 360 s by the Smart Station and the conventional surveying methods, respectively, thereby proving that the Smart Station outperforms the conventional method in its measurement efficiency. CONCLUSIONS : It is envisioned that the Smart Station produces higher work efficiency for field operators as it enables them to collect high accuracy data in a timely and quick manner and not only build a database for the collected data but also vividly visualize it in the field. In the future, it is necessary to conduct additional field tests under various conditions for the in-depth investigation of a Smart Station. In addition, it is expected that the Smart Station will be enhanced by coupling augmented reality (AR) technologies.
        4,000원
        2.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To reduce subway passengers’ exposure to PM 10 (particulate matter less than 10 micrometers), management of PM 10 concentration in underground stations is critical. In this study, we attempted to investigate the distribution of airflow PM 10 concentration in an underground station. The numerical simulations were performed using computational fluid dynamics. In order to apply to CFD, measurement of air volume (supplied and exhausted air) and PM 10 concentration were conducted at the concourse and platform areas of the underground station. The results of the simulation agreed with the actual PM 10 concentration, and we confirmed the distribution of PM 10 concentration depending on air volume conditions. This result will be helpful to reduce the PM 10 in an underground station when using ventilation system.
        4,000원
        3.
        2018.04 구독 인증기관 무료, 개인회원 유료
        In the event of an outbreak of fire in an underground subway station, the speed of movement slows down as many people try to evacuate at once and bottlenecks might begin to occur in some locations, potentially resulting in catastrophic accidents. This study aims to analyze egress routes depending on, among other factors that influence evacuation in the event of an outbreak of fire, the characteristics of occupants and the initial points of fire using the GongEgress simulation program. The simulation result shows that the evacuation time of the vulnerable users is found to take 18% longer than that of ordinary people, and the transfer passageways have lower survival probability compared to that of the platforms. Through the analysis of the results, the structural features of the underground subway station and the points of fire are proved to be the major factors that determine the survival probability of the occupants. Therefore, safety training for passengers through conducting fire drills at the station or fire accident simulations can be established in the evacuation route and plan for reaction at the station or fire accident simulations. Key Words : Underground subway station, Fire accident simulations, Evacuation route, Vulnerable users, Transfer station
        4,600원
        4.
        2017.03 KCI 등재 서비스 종료(열람 제한)
        Domestic urban railway underground station structures, which were built in the 1970s ad 1980s, had been constructed as Cut-and-Cover construction system without seismic design. Because the trends of earthquake occurrence is constantly increasing all over the world as well as the Korean Peninsula, massive human casualties and severe properties and structures damage might be occurred in an non-retrofitted underground station during an earthquake above a certain scale. Therefore, to evaluate the retrofit effect and soil-structure interaction of seismic retrofitted underground station, a centrifugal shaking table test with enhanced stiffness on its structural main member are carried out on 1/60 scaled model using the Kobe and Northridge earthquakes. The seismic retrofitted members, which are columns, side walls, and slabs, are evaluated to comparing with existing non-retrofitted centrifuge test results Also, to simulate the scaled ground using variation of shear velocity according to site conditions such as ground depth and density, resonant column test is performed. From the test results, the relative displacement behavior between ground and structures shows comparatively similar in ground, but is increased on ground surface. The seismic retrofit effects were measured using relative displacements and moment behavior of column and side walls rather than slabs. Additionally, earthquake wave can be used to main design factor due to large structural deformation on Kobe earthquake wave than Norhridge earthquake wave.