검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 168

        1.
        2023.11 구독 인증기관·개인회원 무료
        Domestic commercial low- and intermediate-level radioactive waste storage containers are manufactured using 1.2 mm thick cold-rolled steel sheets, and the outer surface is coated with a thin layer of primer of 10~36 μm. However, the outer surface of the primer of the container may be damaged due to physical friction, such as acceleration, resonance, and vibration during transportation. As a result, exposed steel surfaces undergo accelerated corrosion, reducing the overall durability of the container. The integrity of storage containers is directly related to the safety of workers. Therefore, the development of storage containers with enhanced durability is necessary. This paper provides an analysis of mechanical properties related to the durability of WC (tungsten carbide)-based coating materials for developing low- and intermediate-level radioactive waste storage containers. Three different WC-based coating specimens with varied composition ratios were prepared using HVOF (high-velocity oxy-fuel) technique. These different specimens (namely WC-85, WC-73, and WC-66) were uniformly deposited on cold-rolled steel surfaces ensuring a constant thickness of 250 μm. In this work, the mechanical properties of the three different WCbased coaitng materials evaluated from the viewpoints of microstructure, hardness, adheision force between substrate and coating material, and wear resistance. The cross-sectional SEM-EDS (Scanning Electron Microscope-Energy Dispersive X-ray Spectroscopy) images revealed that elements W (tungsten), C (carbon), Ni (nickel), and Cr (chromium) were uniformly distributed within the each coating layers which was approximately 250 μm thick. The average hardness values of HWC-85 and HWC-73 were found to be 1,091 Hv (Vickers Hardness) and 1,083 Hv, respectively, while the HWC-66 exhibited relatively lower hardness value of 883 Hv. This indicates that a higher WC content results in increased hardness. Adhesion force between and substrates and coating materials exceeded 60 MPa for all specimens, however, there were no significant differences observed based on the tungsten carbide content. Furthermore, a taber-type abrasion tester was used for conducting abrasion resistance tests under specific conditions including an H-18 load weight at 1,000 g with rotational speed set at 60 RPM. The abrasion resistance tests were performed under ambient temperatures (RT: 23±2°C) as well as relative humidity levels (RH: 50±10%). Currently, the ongoing abrasion resistance tests will include some results in this study.
        2.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With the increasing attention to environmental pollution caused by particulate matter globally, the automotive industry has also become increasingly interested in particulate matter, especially particulate matter generated by automobile brake systems. Here, we designed a coating composition and analyzed its mechanical properties to reduce particulate matter generated by brake systems during braking of vehicles. We designed a composition to check the mechanical properties change by adding Cr3C2 and YSZ to the WC-Ni-Cr composite composition. Based on the designed composition, coating samples were manufactured, and the coating properties were analyzed by Vickers hardness and ball-on-disk tests. As a result of the experiments, we found that the hardness and friction coefficient of the coating increased as the amount of Cr3C2 added decreased. Furthermore, we found that the hardness of the coating layer decreased when YSZ was added at 20vol%, but the friction coefficient was higher than the composition with Cr3C2 addition.
        4,000원
        3.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        YSZ (Y2O3-stabilized zirconia)-based ceramics have excellent mechanical properties, such as high strength and wear resistance. In the application, YSZ is utilized in the bead mill, a fine-grinding process. YSZ-based parts, such as the rotor and pin, can be easily damaged by continuous application with high rpm in the bead mill process. In that case, adding WC particles improves the tribological and mechanical properties. YSZ-30 vol.% WC composite ceramics are manufactured via hot pressing under different pressures (10/30/60 MPa). The hot-pressed composite ceramics measure the physical properties, such as porosity and bulk density values. In addition, the phase formation of these composite ceramics is analyzed and discussed with those of physical properties. For the increased applied pressure of hot pressing, the tetragonality of YSZ and the crystallinity of WC are enhanced. The mechanical properties indicate an improved tendency with the increase in the applied pressure of hot pressing.
        4,000원
        4.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Ag/WC electrical contacts were prepared via powder metallurgy using 60 wt% Ag, 40 wt% WC, and small amounts of Co3O4 with varying WC particle sizes. After the fabrication of the contact materials, microstructure observations confirmed that WC-1 had an average grain size (AGS) of 0.27 μm, and WC-2 had an AGS of 0.35 μm. The Ag matrix in WC-1 formed fine grains, whereas a significantly larger and continuous growth of the Ag matrix was observed in WC-2. This indicates the different flow behaviors of liquid Ag during the sintering process owing to the different WC sizes. The electrical conductivities of WC-1 and WC-2 were 47.8% and 60.4%, respectively, and had a significant influence on the Ag matrix. In particular, WC-2 exhibited extremely high electrical conductivity owing to its large and continuous Ag-grain matrix. The yield strengths of WC-1 and WC-2 after compression tests were 349.9 MPa and 280.7 MPa, respectively. The high yield strength of WC-1 can be attributed to the Hall–Petch effect, whereas the low yield strength of WC-2 can be explained by the high fraction of high-angle boundaries (HAB) between the WC grains. Furthermore, the relationships between the microstructure, electrical/mechanical properties, and deformation mechanisms were evaluated.
        4,000원
        5.
        2022.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Recently, the necessity of designing and applying tool materials that perform machining of difficult-to-cut materials in a cryogenic treatment where demand is increasing. The objective of this study is to evaluate the performance of cryogenically treated WC-5 wt% NbC hard materials fabricated by a pulsed current activated sintering process. The densely consolidated specimens are cryogenically exposed to liquid nitrogen for 6, 12, and 24 h. All cryogenically treated samples exhibit compressive stress in the sintered body compared with the untreated sample. Furthermore, a change in the lattice constant leads to compressive stress in the specimens, which improves their mechanical performance. The cryogenically treated samples exhibit significant improvement in mechanical properties, with a 10.5 % increase in Vickers hardness and a 60 % decrease in the rupture strength compared with the untreated samples. However, deep cryogenic treatment of over 24 h deteriorates the mechanical properties indicating that excessive treatment causes tensile stress in the specimens. Therefore, the cryogenic treatment time should be controlled precisely to obtain mechanically enhanced hard materials.
        4,000원
        6.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        3Y-TZP ceramics obtained by doping 3 mol.% of Y2O3 to ZrO2 to stabilize the phase transition are widely used in the engineering ceramic industry due to their excellent mechanical properties such as high strength, fracture toughness, and wear resistance. An additional increase in mechanical properties is possible by manufacturing a composite in which a high-hardness material such as oxide or carbide is added to the 3Y-TZP matrix. In this study, composite powder was prepared by dispersing a designated percentage of WC in the 3Y-TZP matrix, and the results were compared after manufacturing the composite using the different processes of spark plasma sintering and HP. The difference between the densification behavior and porosity with the process mechanism was investigated. The correlation between the process conditions and phase formation was examined based on the crystalline phase formation behavior. Changes to the microstructure according to the process conditions were compared using field-emission scanning electron microscopy. The toughness-strengthening mechanism of the composite with densification and phase formation was also investigated.
        4,000원
        7.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The green body of WC-Co cemented carbides containing polymeric binders such as paraffin, polyethylene glycol (PEG), and polyvinyl acetate (PVA) are prepared. The green density of the WC-Co cemented carbides increases with the addition of binders, with the exception of PVA, which is known to be a polar polymeric substance. The green strength of the WC-Co cemented carbides improves with the addition of paraffin and a mixture of PEG400 and PEG4000. In contrast, the green strength of the WC-Co does not increase when PEG400 and PEG4000 is added individually. The compressive strength of the green body increases to 14 MPa, and the machinability of the green body improves when more than 4–6 wt% paraffin and a mixture of PEG400 and PEG4000 is used. Simultaneously, the sintered density of WC-Co is as high as 99% relative density, similar to a low binder addition of 1–2 wt%.
        4,000원
        8.
        2021.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, binderless-WC, WC-6 wt%Co, WC-6wt% 1 and 2.5 B4C materials are fabricated by spark plasma sintering process (SPS process). Each fabricated WC material is almost completely dense, with a relative density up to 99.5 % after the simultaneous application of pressure of 60 MPa. The WC added Co and Co-B4C materials resulted in crystalline growth. The WC with HCP crystal structure has respective interfacial energy (basal facet direction: 1.07 ~ 1.34 J·m−2, prismatic direction: 1.43 ~ 3.02 J·m−2) that depends on the grain growth direction. It is confirmed that the continuous grain growth, biased by the basal facet, which has relatively low energy, is promoted at the WC/Co interface. As abnormal grain growth takes place, the grain size increases more than twice from 0.37 to 0.8 um. It is found through analysis that the hardness property also greatly decreases from about 2661.4 to 1721.4 kg/mm2, along with the grain growth.
        4,000원
        9.
        2021.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Expensive PCBN or ceramic cutting tools are used for processing of difficult-to-cut materials such as Ti and Ni alloy materials. These tools have the problem of breaking easily due to their high hardness but low fracture toughness. To solve these problems, cutting tools that form various coating layers are used in low-cost WC-Co hard material tools, and research on various tool materials is being conducted. In this study, binderless-WC, WC-6 wt%Co, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are densified using horizontal ball milled WC-Co, WC-Co-Mo2C powders, and spark plasma sintering process (SPS process). Each SPSed Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co- 2.5 wt% Mo2C hard materials are almost completely dense, with relative density of up to 99.5 % after the simultaneous application of pressure of 60 MPa and almost no significant change in grain size. The average grain sizes of WC for Binderless- WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are about 0.37, 0.6, 0.54, and 0.43 μm, respectively. Mechanical properties, microstructure, and phase analysis of SPSed Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are investigated.
        4,000원
        10.
        2020.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Expensive PCBN or ceramic cutting tools are used for the processing of difficult-to-cut materials such as Ti and Ni alloy materials. These tools have a problem of breaking easily due to their high hardness but low fracture toughness. To solve this problem, cutting tools that form various coating layers are used in low-cost WC-Co hard material tools, and researches on various tool materials are being conducted. In this study, WC-5, 10, and 15 wt%Ni hard materials for difficult-to-cut cutting materials are densified using horizontal ball milled WC-Ni powders and pulsed current activated sintering method (PCAS method). Each PCASed WC–Ni hard materials are almost completely dense, with a relative density of up to 99.7 ~ 99.9 %, after the simultaneous application of pressure of 60 MPa and electric current for 2 min; process involves almost no change in the grain size. The average grain sizes of WC and Ni for WC-5, 10, and 15 wt%Ni hard materials are about 1.09 ~ 1.29 and 0.31 ~ 0.51 μm, respectively. Vickers hardness and fracture toughness of WC-5, 10, and 15 wt%Ni hard materials are about 1,923 ~ 1,788 kg/mm2 and 13.2 ~ 14.3 MPa.m1/2, respectively. Microstructure and phase analyses of PCASed WC-Ni hard materials are performed.
        4,000원
        11.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        W2C is synthesized through a reaction-sintering process from an ultrafine-W and WC powder mixture using spark plasma sintering (SPS). The effect of various parameters, such as W:WC molar ratio, sintering temperature, and sintering time, on the synthesis behavior of W2C is investigated through X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) analysis of the microstructure, and final sintered density. Further, the etching properties of a W2C specimen are analyzed. A W2C sintered specimen with a particle size of 2.0 μm and a relative density over 98% could be obtained from a W-WC powder mixture with 55 mol%, after SPS at 1700℃ for 20 min under a pressure of 50 MPa. The sample etching rate is similar to that of SiC. Based on X-ray photoelectron spectroscopy (XPS) analysis, it is confirmed that fluorocarbon-based layers such as C-F and C-F2 with lower etch rates are also formed.
        4,000원
        12.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        ZrB2 ceramic and ZrB2 ceramic composites with the addition of SiC, WC, and SiC/WC are successfully synthesized by a spark plasma sintering method. During high-temperature oxidation, SiC additive form a SiO2 amorphous outer scale layer and SiC-deplete ZrO2 scale layer, which decrease the oxidation rate. WC addition forms WO3 during the oxidation process to result in a ZrO2/WO3 liquid sintering layer, which is known to improve the antioxidation effect. The addition of SiC and WC to ZrB2 reduces the oxygen effective diffusivity by one-fifth of that of ZrB2. The addition of both SiC and WC shows the formation of a SiO2 outer dense glass layer and ZrO2/WO3 layer so that the anti-oxidation effect is improved three times as much as that of ZrB2. Therefore, SiC- and WC-added ZrB2 has a lower two-order oxygen effective diffusivity than ZrB2; it improves the anti-oxidation performance 3 times as much as that of ZrB2.
        4,000원
        13.
        2019.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The microstructure, hardness, and wear behaviors of a High Velocity Oxygen Fuel(HVOF) sprayed WC-CoFe coating are comparatively investigated before and after laser heat treatments of the coating surface. During the spraying, the binder metal is melted and a small portion of WC is decomposed to W2C. A porous coating is formed by evolution of carbon oxide gases formed by the reaction of the free carbon and the sprayed oxygen gas. The laser heat treatment eliminates the porosity and provides a more densified microstructure. After laser heat treatment, the porosity in the coating layer decreases from 1.7% to 1.2 and the coating thickness decreases from 150 μm to 100 μm. The surface hardness increases from 1440 Hv to 1117 Hv. In the wear test, the friction coefficient of coating decreases from 0.45 to 0.32 and the wear resistance is improved by the laser heat treatment. The improvement is likely due to the formation of oxide tribofilms.
        4,000원
        14.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the microstructure and wear properties of cermet (ceramic + metal) coating materials manufactured using high velocity oxygen fuel (HVOF) process. Three types of HVOF coating layers are formed by depositing WC-12Co, WC-20Cr-7Ni, and Cr3C2-20NiCr (wt.%) powders on S45C steel substrate. The porosities of the coating layers are 1 ± 0.5% for all three specimens. Microstructural analysis confirms the formation of second carbide phases of W2C, Co6W6C, and Cr7C3 owing to decarburizing of WC phases on WC-based coating layers. In the case of WC-12Co coating, which has a high ratio of W2C phase with high brittleness, the interface property between the carbide and the metal binder slightly decreases. In the Cr3C2-20CrNi coating layer, decarburizing almost does not occur, but fine cavities exist between the splats. The wear loss occurs in the descending order of Cr3C2-20NiCr, WC-12Co, and WC-20Cr-7Ni, where WC-20Cr-7Ni achieves the highest wear resistance property. It can be inferred that the ratio of the carbide and the binding properties between carbide–binder and binder–binder in a cermet coating material manufactured with HVOF as the primary factors determine the wear properties of the cermet coating material.
        4,000원
        15.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study focuses on the fabrication of a WC/Co composite powder from the oxide of WC/Co hardmetal scrap using solid carbon in a hydrogen gas atmosphere for the recycling of WC/Co hardmetal. Mixed powders are manufactured by mechanically milling the oxide powder of WC-13 wt% Co hardmetal scrap and carbon black with varying powder/ball weight ratios. The oxide powder of WC-13 wt% Co hardmetal scrap consists of WO3 and CoWO4. The mixed powder mechanically milled at a lower powder/ball weight ratio (high mechanical milling energy) has a more rapid carbothermal reduction reaction in the formation of WC and Co phases compared with that mechanically milled at a higher powder/ball weight ratio (lower mechanical milling energy). The WC/Co composite powder is fabricated at 900℃ for 6 h from the oxide of WC/Co hardmetal scrap using solid carbon in a hydrogen gas atmosphere. The fabricated WC/Co composite powder has a particle size of approximately 0.25-0.5 μm.
        4,000원
        17.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study we manufacture a Ni-Cr-B-Si +WC/12Co composite coating layer on a Cu base material using a laser cladding (LC) process, and investigate the microstructural and mechanical properties of the LC coating and Ni electroplating layers (reference material). The initial powder used for the LC coating layer is a powder feedstock with an average particle size of 125 μm. To identify the microstructural and mechanical properties, OM, SEM, XRD, room and high temperature hardness, and wear tests are implemented. Microstructural observation of the initial powder and LC coating layer confirm the layer is composed mainly of γ-Ni phases and WC and Cr23C6 carbides. The measured hardness of the LC coating and Ni electroplating layers are 653 and 154 Hv, respectively. The hardness measurement from room up to high temperatures of 700°C result in a hardness decrease as the temperature increases, but the hardness of the LC coating layer is higher for all temperature conditions. Room temperature wear results show that the wear loss of the LC coating layer is 1/12 of the wear level of the Ni electroplating layer. The measured bond strength is also greater in the LC coating than the Ni electroplating.
        4,000원
        18.
        2017.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        WC-CrC-Ni coatings were prepared by nine processes of the Taguchi program with three levels for the four spray parameters: spray distance, flow rates of hydrogen and oxygen, and powder feed rate. The optimal coating process (OCP) was oxygen flow rate of 38 FMR, hydrogen flow rate of 53 FMR, powder feed rate of 25 g/min, and spray distance of 7 inches. Hardness of 1150 Hv and porosity of 1.2 %, were obtained by OCP; these are better results compared with the highest 1033 Hv and the lowest 1.5% porosity obtained by nine processes of the Taguchi program. Friction coefficient of the WC-CrC-Ni coating decreased from 0.36 ± 0.07 at 25 oC to 0.23 ± 0.07 at 450 oC. These values were smaller than those of the EHC (electrolytic hard chrome) plating at both temperatures due to lubrication from the oxide debris. The wear trace and wear depth of the coating are smaller than those of the EHC at both temperatures. Pitting was not found in the WC-CrC-Ni coating sample, while it did appear in the EHC sample.
        4,000원
        19.
        2016.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study focuses on the development of an alkaline leaching hydrometallurgy process for the recovery of tungsten from WC/Co hardmetal sludge, and an examination of the effect of the process parameters on tungsten recovery. The alkaline leaching hydrometallurgy process has four stages, i.e., oxidation of the sludge, leaching of tungsten by NaOH, refinement of the leaching solution, and precipitation of tungsten. The WC/Co hardmetal sludge oxide consists of WO3 and CoWO4. The leaching of tungsten is most affected by the leaching temperature, followed by the NaOH concentration and the leaching time. About 99% of tungsten in the WC/Co hardmetal sludge is leached at temperatures above 90oC and a NaOH concentration above 15%. For refinement of the leaching solution, pH control of the solution using HCl is more effective than the addition of Na2S·9H2O. The tungsten is precipitated as high-purity H2WO4·H2O by pH control using HCl. With decreasing pH of the solution, the tungsten recovery rate increases and then decrease. About 93% of tungsten in the WC/Co hardmetal sludge is recovered by the alkaline leaching hydrometallurgy process.
        4,000원
        20.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        WS2-W-WC embedded carbon nanofiber composites were fabricated by using electrospinning method for use in high-performance supercapacitors. In order to obtain optimum electrochemical properties for supercapacitors, WS2 nanoparticles were used as precursors and the amounts of WS2 precursors were controlled to 4 wt% (sample A) and 8 wt% (sample B). The morphological, structural, and chemical properties of all samples were investigated by means of field emission photoelectron spectroscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. These results demonstrated that the embedded phases of samples A and B were changed from WS2 to WS2-W-WC through carbothermal reaction during carbonization process. In particular, sample B presented high specific capacitance (~119.7 F/g at 5 mV/s), good high-rate capacitance (~60.5%), and superb cycleability. The enhanced electrochemical properties of sample B were explained by the synergistic effect of the using 1-D structure supports, increase of specific surface area, and improved conductivity from formation of W and WC phases.
        4,000원
        1 2 3 4 5