Earthquake is one of the hazard so hard to provide because it is difficult predicted occurred time, scale and characters. Neighbors which have damaged by earthquake look out for statement of damage, It is bigger than nation which has not prepared seismic code at ordinary time seismic damage which belong to loss of life. The earthquake in Kobe, Japan showed that the damages were concentrated on the buildings which were not considered to be protected from the earthquakes. Seismic code applied structures was small damaged but non applied structures was much damaged such as collapse and loss of life. In this study, apartment structures in Korea analyze about earthquake hazard and evaluate seismic performance. Through the this study we have notice of earthquake hazard for apartment structures which live a lot of population of Korea and suppose necessary for seismic retrofit.
This paper is concerned with the natural periods of ambient vibration and eigenvalue analysis. Ambient vibration tests were conducted to four bearing-wall reinforced concrete buildings ranging from twelve to nineteen stories. The performance of modeling in eigenvalue analysis was investigated using consideration of rigidity out of the plane in the slab and the non-structural bearing wall. Measured natural period was also compared with the value by the KBC2005. Natural period of the short direction in eigenvalue analysis is well fitted with the measured one. In the other hand, Natural period of the long direction in eigenvalue analysis is slightly more overestimated than the measured one. Natural period of the long direction in eigenvalue analysis was found to be enhanced by considering the effect of the stiffness out of the plane of the slab and non-structural wall in the structural modeling.
Before incorporating the earthquake-resistance design in design code(1988), most of existing residential buildings were built without having lateral resistance capacity in addition to their structural peculiarity such as exterior stair ways, exterior elevator room. For these reasons, the retrofitting research demands for existing buildings arise recently and many retrofitting methods are proposed. These tasks are irnportant to reduce the enormous economic loss and environmental issues. The objective of this study is to predict the perforrnance increase due to various strengthen schemes and suggest adequate strengthen methods for wall type apartment buildings not designed to resist earthquake.
The reinforced concrete wall type apartments built before 1988 in Korea, which are rarely seen in other countries, were constructed using tunnel form method for convenience of construction. Tunnel form method, however, do not arrange bearing walls in the direction of long side of the apartment, and this results in little resistance capability against lateral loads in that direction. Consequently, there exists significant collapse possibility due to the formation of plastic hinge at the joints of wall and slab during earthquake. This study experimentally investigates the reinforcement methods using carbon sheet and L-shaped steel which were not seismically designed. The reinforcement method using carbon sheet and L-shaped angle, has following advantages; construction workability, usage of light-weight material, and little requirement for the installation room. The specimen with steel bar fill up using modified epoxy mortar in the mid-span of the slab shows the same stiffness as the standard specimen without reinforcement and the stiffness of the specimen reinforced by carbon sheets without L-shaped steel was increased by only about 13%, implying that those existing methods cannot provide significant reinforcement effects. For the specimens of which wall-slab joints were reinforced using both carbon sheet and L-shaped steel, the increase of stiffness ranges from 43% to 496% and the increase of energy dissipation amount ranges from 120% to 233%. Also it was identified that the linkage method using penetration bolts was more efficient than the one using expansion anchors in increasing stiffness, strength and energy dissipation capacity.
In this study, existing wall-type apartment in 1990s is evaluated by KBC2009. Based on structural calculation, seismic performance evaluation is performed with dynamic nonlinear analysis. After that, this building is extended up to three stories in vertical direction. In this study, the seismic performance evaluation results of wall-type apartment can be used in performance-based design of the vertical extension remodeling.
1988년 이전에 건설된 벽식 구조 아파트는 내진규정의 적용을 받지 않아 리모델링을 위해서는 현행법규에 적합한 내진보강이 필요하다. 본 연구에서는 벽체 신설 공법에 의한 내진 보강효과를 분석하기 위하여, 개발된 리모델링 건축 평면 내에서 전단벽의 신설이 가능한 위치별 보강 효과와 벽량 및 벽두께의 변화에 따른 내진 보강 효과를 분석하도록 하였다. 내진성능의 평가는 층간 횡 변위를 이용하여 허용 층간변위의 만족여부에 의하여 분석하였으며, 건축물의 구조 모델은 슬래브의 횡 방향 기여도를 고려한 유효보 모델을 사용하였다. 본 연구의 결과에 따르면 리모델링 시 단위 모듈별 내진보강이 가능하며, 전단벽의 신설 위치와 벽량에 따라 건물 건체의 거동에 영향을 받는 것을 확인 할 수 있다.