검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 33

        2.
        2015.07 서비스 종료(열람 제한)
        Arsenic (As) is accumulated in rice grain due to environmental reasons such as polluted ground water and soil, and As toxicity constitutes a serious threat to human health. However, the accurate information required for understanding As-responsive mechanisms remain mostly unknown in rice. Here, we performed the comparative genome-wide transcriptome analysis between As tolerance type (ATT) rice mutant induced by γ-irradiation and its wild type (WT). As compared to WT after As treatment of 150 ppm, ATT exhibited the phenotypic differences such as vigorous growth in shoots and root hairs, and low accumulation of H2O2 in rice roots. In transcriptome analysis, we found between WT and ATT that As toxicity commonly affected to inhibit gene regulations involved in photosynthesis, mitochondrial electron transport and lipid biosynthesis metabolism. While, many genes associated with cysteine synthesis metabolism considerably up regulated in both As-treated plants. Additionally, we found the potential As tolerance-related genes involved in abiotic stress-responsive mechanism and RNA-protein synthesis for protein degradation and modification. To further analyzes the genetic variations of As-responsive genes, the DNA polymorphic DEGs associated with oxidoreductase significantly distributed in ATT more than in WT.
        3.
        2012.07 서비스 종료(열람 제한)
        The objective of this study were to identify QTLs for agronomic traits using a set of introgression lines carrying wild rice (Oryza rufipogon) segment in cultivated rice (ssp. japonica cv. Hwaseongbyeo). Ninety-six ILs were evaluated for seven agronomic traits, amylose and protein contents. The proportion of the recurrent genome in ILs ranged from 87.8 to 100%, with an average of 96.7%. The mean number of homozygous and heterozygous donor segments were 2 (ranging 0-7) and 1.7 (ranging 0-6), respectively, and the majority of these segments had size less than 10 cM. A total of 22 quantitative trait loci were identified for 9 traits and each QTL explained 7.2% to 56.6% of the phenotypic variance. Some QTLs were clustered in a few chromosomal regions. A first cluster was located near RM527 on chromosome 6 with QTLs for culm length, panicle length, days to heading, 1000-grain weight and protein content. Three ILs with high spikelets per panicle compared to the recurrent parent were selected to detect and fine map the wild segments responsible for this variation. The results will be discussed.
        4.
        2012.03 KCI 등재 서비스 종료(열람 제한)
        Wild rice might have previously unidentified genes important for disease resistance and stress tolerance in response to biotic and abiotic stresses. A set of subtractive library was constructed both from leaves of wild rice plants, Oryza grandiglumis (CCDD, 2n=48), treated with fungal elicitor and from wounded leaves. A partial fragment that was homologous to PR10 genes from other plant species was identified via suppression subtractive hybridization and cDNA macroarray. The obtained full-length cDNA sequence (OgPR10) contains an open reading frame of 480 bp nucleotide, encoding 160 amino acids with a predicted molecular mass of 16.944 kDa and an isoelectric point (pI) of 4.91. The multiple alignment analyses showed the higher sequence homology of OgPR10 with PR10 genes identified in rice plants at amino acid level. The OgPR10 mRNA was not expressed by treatment with wounding, jasmonic acid, and salicylic acid, but markedly expressed in leaves treated with protein phosphatase inhibitors cantharidin and endothall, and yeast extract. In addition, the expression of OgPR10 mRNA was induced within 72 h after treatment with probenazole, one of well-known chemical elicitors, and reached the highest level at 144 h. Heterologous expression of OgPR10 caused growth inhibition and seedling lethality in E. coli and Arabidopsis, respectively. Chemically induced OgPR10 expression with glucocorticoid-mediated transcriptional induction system further reconfirmed its lethality on Arabidopsis seedling. In addition, OgPR10-expressing rice plants, Oryzae sativar were resistant against the infection of rice blast fungus, Magnaporthe grisea. These results indicate that OgPR10 is involved in probenazole- and microbe associated molecular patterns-mediated disease resistance responses in plants and is a potential gene for developing disease resistance crop plants.
        16.
        2006.10 KCI 등재 서비스 종료(열람 제한)
        최근 GMO 작물의 재배, 생산이 날로 늘어나며 GMO 작물이 환경에 미칠 수 있는 많은 가능성들이 대두되고 있다. 특히 GMO 작물과 야생종과의 자연교잡에 의한 유전자 전이로, 잡초화의 문제점이 제기되며 생태계의 변화 및 파괴의 위험성이 우려되고 있다. 본 실험에서는 GM벼와 야생 및 근연종 사이의 교잡가능성 및 유전자 전이율을 조사하기 위한 유전자 이동의 분석 체계를 확립하고자 하였다. 벼의 개화시기에 GM벼와 야생 및 근연종 간의 인공교배 후 수확한 교잡 추정 종자를 발아시켜서 제초제를 처리하여 교잡종자를 선별하였다. 또한 GM 벼 및 야생 근연종벼들 간의 RAPD PCR 분석을 통해 선별한 marker를 사용하여 낙동 교잡벼와 샤레 교잡벼가 GM 벼와 교배된 식물체임을 확인하였다. PCR 분석을 수행한 결과 GM벼에서 도입된 trehalose-6-phosphate phosphatase (TPP) 유전자와 선별marker로 사용된 bar유전자가 GM벼 뿐만 아니라 샤레 교잡벼에도 존재하였으며, 결과적으로 GM벼의 bar 및 tpp 유전자가 잡초성벼인 샤레 교잡벼에 전이되었음을 검증할 수 있었다.
        1 2