Since 2018, Central Research Institute of Korea Hydro & Nuclear Power (KHNP–CRI) has been operating an X-ray irradiation system with a maximum voltage of 160 kV and 320 kV X-ray tube to test personal dosimeters in accordance with ANSI N13.11-2009 “Personnel Dosimetry Performance- Criteria for Testing”. This standard requires that dosimeters for the photon category testing be irradiated with the X-ray beams appropriate to the ISO beam quality requirements. KHNP-CRI has implemented the fourteen X-ray reference radiation beams in compliance with ISO-4037-1, 2, and 3. When installing the X-ray irradiation system, KHNP-CRI evaluated the uncertainties of dose conversion coefficients for deep and shallow doses, based on “Catalogue of X-ray spectra and their characteristic data – ISO and DIN radiation qualities, therapy and diagnostic radiation qualities, unfiltered X-ray spectra” published by Physikalisch Technische Bundesanstalt (PTB). A CdTe detector (X-123, AMPTEK) with disk type collimators made of tungsten was used to acquire X-ray spectra. The detector was located at 1 m from the center of the target material in the Xray tubes. Six uncertainty factors for the dose conversion coefficients for the fourteen X-ray beams were chosen as follows; the minimum and maximum cut-off energies Emin and Emax, the air density (ρ), the accuracy of the high-voltage of the X-ray tube, statistics of the pulse height spectra and the unfolding method. For example, uncertainty of each quantity for a HK30 beam was calculated to be 0.3%, 2.32%, 0.19%, 1.25%, and 0.13%, and 0.18%, respectively. The combined standard uncertainty for the deep dose conversion coefficient of the HK30 beam was calculated to be 2.67%. The coverage factor corresponding to a 95 percent confidence interval was obtained as k = 1.8 using a Monte Carlo method, which is slightly lower the coverage factor of k = 1.95 for a Gaussian distribution. This seems to result from that two dominant uncertainties, the unfolding uncertainty and minimum cut-off energy uncertainty, follow a rectangular distribution.
This development is for non-destructive machine using X-Ray source about detecting outline faults of below middle size products. The market share of previous non-destructive machine has three major companies, such as GE, Siemens and Philips. In fact, Korea has a import of this product over 90 percentage. Fortunately, The major companies have not various kinds below middle size non-destructive machine. This machine has superior performance than previous X-Ray equipment in below middle size non-destructive machine. This machine is satisfactory needs for customers looking for X-Ray machine of a line detector. This research is for design and manufacturing of non-destructive X-Ray machine. This research will give rise to major effects for other various non-destructive market industries except car-industry. The most important fact is that this developed non-destructive machine is controlled below 0.2 micro-μSv.
This development is non-destructive machine using X-Ray source about detecting outline faults of small-middle products. This machine is supplement of previous X-Ray equipment. This machine is satisfaction of needs for customers using X-Ray machine of a line detector for weakness. This research is for design and manufacturing of X-Ray apparatus. This machine is measuring below a meter. This research is a major ripple effect for other industries except car-industry.
원전 부지에 저장중인 방사성폐기물을 처분장에 인도하기 전에 폐기물의 물리·화학적 특성이 인수기준에 적합한지를 검사해야 한다. 검사하는 방법 중 비파괴 검사방법에 대해 조사하였는데, 조사결과 X-ray를 이용한 비파괴 방법을 적용하면 인수검사 항목 중‘드럼내 내용물 검사’,‘ 유리수 및 채움율 정량검사’를 할 수 있는 것으로 나타났다. 본 논문에서는 먼저 X-ray 장비의 원리와 시스템 선정 시 고려해야 할 사항들에 대해 간략하게 살펴 본 후 X-ray 장비를 이용하여 검사해야 할 드럼들의 특성을 분석하였다. 분석한 특성들은 드럼의 종류, 드럼의 규격, 드럼내 내용물의 종류 등이었고 이들 특성자료를 이용하여 검사에 필요한 X-ray 소요에너지를 계산하였다. 계산 결과 드럼 크기가 320 ℓ 이하인 드럼을 검사하기 위한 소요에너지는 3 MeV 이하로 나타났으며 경제성 및 실현가능성 측면에서 450 keV 장비와 3 MeV 장비를 조합하거나 단독으로 사용하는 것이 바람직하고 이 때 450 keV 장비를 이용하여 검사가 가능한 저밀도 드럼수는 2006년 12월 저장기준으로 42,327 드럼, 3 MeV 장비를 이용하여 검사가 가능한 드럼 수는 18,105 드럼으로 나타났다. 검사를 수행하는 주체, 장비 구매 방안 등에 따라 4가지 검사 시나리오를 수립하고 이에 대해 경제성 및 적용 가능성을 분석한 결과 최적의 검사시나리오는 인수기준, 처리 및 처분장 인도에 대한 폐기물 발생자의 정책 등에 영향을 받는 것으로 나타났다. 예를들어,‘ 유리수’,‘ 채움율’에 대한 정량분석과‘내용물 확인’을 모두 해야 할 경우에는 밀도가 상대적으로 낮은 폐기물이 담겨있는‘저밀도 드럼’의 검사를 위해 450 keV 이동형 장비 2대를 구입하여 자체 검사하고‘고밀도 드럼’은 외주로 검사하는 것이 바람직할 수 있다. 반면‘내용물 확인’만을 비파괴 검사항목으로 할 경우에는 450 keV 급 이동형 장비 1대면 연간 13,000 드럼을 검사할 수 있는 것으로 나타났다.
We have developed a near real-time flare alerting system which (1) downloads the latest GOES-l0 1-8 Å X-ray flux 1-min data by an automated ftp program and shell scripts, (2) produces a beep sound in a simple IDL widget program when the flux is larger than a critical value, and (3) makes it possible to do a wireless alerting by a set of portable transceivers. Thanks to the system, we have made successful Ha flare observations by the Solar Flare Telescope in Bohyunsan Optical Astronomy Observatory. This system is expected to be helpful for ground-based flare observers.
본 연구는 병원 및 대학교 등에 설치된 X선 발생장치를 대상으로 진단용 방사선 발생장치의 품질관리 항목을 적용하여 성능 비교를 하여 주기적인 성능관리의 중요성을 인식시켜 성능유지 및 관리에 도움을 주고자 한다. 우선 재현성 및 직선성 실험결과 모든 실험조건에서 합격기준에 부합되었으며 주기적인 정도관리가 부족한 GX-650장치의 경우 재현성 평가의 백분율 오차가 높았으며 직선성 평가에서는 관전압을 100 kVp로 설정 시 0.105로 백분율 오차에서 벗어나게 측정되었다. 또한 관전압 및 관전류의 정확도 평가결과 상대적으로 X선 발생횟수가 낮은 장치에서 백분율 오차가 낮은 것을 알 수 있었다. 반가층 실험은 모든 장치에서 관전압 별 반가층 기준에 모두 포함되었다. 따라서 병원용, 실습용 구분보다는 모든 장치의 정도관리의 중요성을 인식하고 적극적으로 장치의 성능관리를 시행하여 장치를 유지 관리해야 할 것이며 특수의료장비처럼 짧은 주기의 정도관리 제도를 마련해야 할 것으로 사료된다.
방사선사는 일반촬영 시에 다양한 환자를 만나게 된다. 노령환자, 유아 등 몸이 불편한 환자를 검사하게 된다. 소규모의 병·의원에는 방사선사가 혼자 업무를 보는 경우가 자주 발생한다. 이러한 경우 방사선사의 두 손은 환자의 자세를 유지하는데 사용되어지기 때문에 촬영에 있어서 어려움을 느끼게 된다. 본 연구는 이러한 문제점을 극복하고자 진단용 방사선 발생 발판 스위치를 고안하여 실험하였다. 제작한 발판 스위치를 진단용 엑스선 촬영장치에 장착하여 조사선량 재현성 시험, kVp, mAs, 백분율평균오차와 같은 정량적 평가를 실시하였다. 결과적으로 발판 스위치 사용에 대한 정량적 평가는 조사선량 재현성 시험에서 변동계수가 0.05이하로 측정되었고 kVp 시험에서는 백분율 평균오차가 ± 10% 이내로 측정되었다. mAs 시험에서도 백분율 평균오차가 ± 20% 이내로 측정되었다. 이는 진단용 방사선 발생장치의 검사기준 범위에 모두 부합하여 사용상 문제점은 제시되지 않았다. 또한 현재 근무 중인 방사선사를 상대로 유용성에 관한 정성적 평가를 실시하였다. 결론적으로 발판스위치의 엑스선 발생효율의 정량적 평가에서는 실험된 검사가 엑스선 발생장치 장비 기준 범위에 부합하였으며 설문을 통한 평가에서도 먼저 병·의원에서 근무하는 방사선사를 상대로 발판 스위치를 사용한 이후 설문을 통해 발판 스위치에 대한 편리성과 활용성에 대해 설문 실시한 결과는 발판스위치 사용은 임상에서 많은 도움을 줄 수 있는 긍정적인 결과로 나타내었다. 그러므로 진단용 엑스선 촬영용 발판 스위치를 사용하면 방사선 기술자 작업의 신속성과 정확성을 효과적으로 향상 시킬 수 있으므로 의료 서비스 만족도를 높이는 데 효과적으로 사용할 수 있을 것이다.
원자로 내 사고발생 시 냉각수의 비등으로 기포가 발생하고, 기포율을 측정하기 위하여 열수력 안전 분 야에서는 주로 Optical Fiber Probe(OFP)나 광학 카메라를 이용하여 측정하지만 기하학적 구조의 한계로 인 해 17 × 17 배열의 봉 다발 내에 장비를 설치하는 것에는 어려움이 있다. 본 연구는 예비 연구로서 봉 다발 에 적용하기 전 X선 시스템과 다양한 모사 팬텀을 이용하여 연구 가능성 평가를 수행하였다. 라디오그라피 및 토모그라피 실험을 통해 X선 발생 장치의 관전압 130 kVp, 관전류 1 mA가 적합하였다. 또한, 기포 해상 도 팬텀을 통해 가시적으로 1 mm 크기의 구멍에 대해 측정이 가능하였으며 막대 팬텀을 이용한 대조도 평 가의 경우 프레온 내부에서 대조도가 상대적으로 떨어짐을 확인할 수 있었다. 그러나 영상 재구성 시 일그 러짐이 없는 좋은 영상을 획득할 수 있었다. 기포 발생 팬텀 실험을 통해 기포의 유동 방향 확인 및 단층 영상을 획득할 수 있었고, Image J 툴을 이용하여 하나의 단층영상에 대해 18 %의 기포율을 측정할 수 있 었다. 본 연구는 핵연료 주변 기포율 측정을 위한 선행 연구를 수행하였고 지속적인 연구를 위한 기초 연 구로서 활용할 수 있을 것이다.
본 논문에서는 고에너지 엑스선(6MeV)을 조사한 세포막 모델에서 K+-Na+ pump 시스템의 능동적 전달특성에 대하여 연구하였다. 이 실험에 사용된 세포막 모델은 Na+슬폰화 폴리스티렌-디비닐벤젠(polystyrene-divinylbenzene) 혼성 중합막을 사용하였다. 이온의 초기플럭스는 H+이온 농도의 증가와 함께 증가하였다.
이 실험의 조건을 pH 1.5-5, 온도 36.5℃로 하여 첫 번째, 방사선이 조사되지 않은 막에서 K+의 초기플럭스는 2.09x10-4-1.32x10-3mole/cm2·h이고 Na+의 초기플럭스는 7.09 x10-4-1.09x10-3mole/cm2·h으로 나타내었다. 두 번째, 방사선이 조사된 막에서 K+의 초기플럭스는 21.0x10-4-16.7x10-3mole/cm2·h이고 Na+의 초기플럭스는 62.0x10-4-20.6x10-3mole/cm2·h으로 나타내었다. 막의 K+/Na+선택도는 약 1.10이다. 조사된 막의 pH의 추진력은 조사되지 않은 막보다 약 9-20배 정도 유의성 있게 증가하였다. 세포막모델에서 K+-Na+의 pump 시스템의 능동적 전달특성이 비정상적이기 때문에 세포장해가 세포에서 발현된다고 사료된다.
최근 고령화 사회에 접어들고 있는 의료현장에서 치아건강에 대한 관심이 커지면서 진단을 위한 치아 방사선 검사의 횟수가 증가하고 있다. 이는 국민 전체의 방사선피폭량 또한 증가하고 있다고 볼 수 있다. 또한 치과방사선에 대한 국민들의 방사선 피폭에 대한 관심도 증가하고 있어 치과 파노라마 촬영장치에 대한 기본 데이터 확보와 이에 대한 조사 및 선량의 측정이 필요하다. 본 연구에서는 ALOKA PDM-117 선량계를 이용하여 치과파노라마장치(VATEC Pax-400)에서 발생되는 2차원적인 선량분포도를 측정하고 그 분포에 대한 평가를 환자의 방사선피폭 차원에서 확인하였다. 치과파노라마장치의 선량분포는 치아부분 이외에도 턱과 안면부위에서 높았으며 산란선의 영향까지 고려한다면 방사선에 민감한 수정체에까지 불필요한 방사선의 피폭됨을 알 수 있었다. 본 연구 결과는 다양한 크기의 검사체와 선량 측정위치에서 보다 정확한 선량평가를 하는데 매우 유용하게 이용될 것으로 사료된다.
본 연구는 진단용 X선 발생장치의 성능을 검사하기 위해 직선성(Linearity), 재현성(reproducibility) 및 반가층 (Half Value Layer; HVL)을 실험하였다. 직선성(Linearity)은 설정된 조사조건으로 한 장비 당 4회씩 조사하여 측정된 선량을 기록하고 mR/mAs를 구하여 측정하였으며, 측정값이 0.1을 초과하면 직선성이 떨어지는 것을 알 수 있다.재현성(Reproducibility)은 80kVp, 200mA, 20mAs와120kVp, 300mA, 8mAs의 조건으로 10회 조사하여 변동계수(CV) 공식에 대입하여 측정한 값이 0.05안에 포함되면 양호하게 나타나는 것을 알 수 있다. 반가층(Half Value Layer:HVL)은 filter가 없을 때 설정된 조건으로 3회 조사하여 측정한 후 부가필터용 반가층 물질로 사용하여 필터의 두께를0, 1, 2, 4 mm로 바꾸어 가며 부가필터가 없을 때의 ½이하인 측정값이 나올 때 까지 측정한다. 현재 본원에서 사용하는 진단용 X선 발생장치 5대를 대상으로 직선성, 재현성, 반가층을 측정한 결과 직선성은 1번 장비에서는 300mA~400mA, 5번 장비에서는 100mA~200mA 부근에서 양호하지 않았으며, 반가층 측정에서는 80kVp 측정치에서 1번 장비에서 검사기준을 만족하지 못하였다. 출력은 단상에 비해 삼상장치가 높게 나왔다. 실험을 통하여 밝혀진결과를 토대로 정기적인 장비관리와 노후 된 장비의 교환 등이 이루어진다면 장비 사용의 효율성을 극대화 할 수 있으며, 방사선 피폭선량을 줄임과 동시에 영상의 화질을 향상시킬 수 있어 정확한 진단에 기여할 수 있을 것으로 사료된다.
본 연구에서는 a-Se 기반 디지털 X-선 영상장치의 저대조도 특성을 평가하기 위하여 contrast-detail 곡선 해석을 수행하였다. 본 실험에 사용된 X-선 영상장치는 픽셀크기가 139㎜×139㎜이고 유효면적이 46.7㎝×46.7㎝인 a-Si TFT 기판 위에 500㎜ 두께의 광전도체가 코팅된 구조를 갖고 있다. Contrast-detail 곡선을 측정하기 위하여 우선 주어진 촬영조건(즉, 40, 50, 60, 70, 80 kVp, and 16 mA.s)에서 상용 팬톰 인 CDRAD 2.0을 사용하여 X-선 영상을 획득한 후, 그 영상으로부터 IQFinv 인자를 사용하여 그 특성을 최종 평가하였다. 평가된 IQFinv 값은 주어진 광 플루언스(즉, 1.8×105, 5.9×105, 11.3×105, 19.4×105, and 29.4×105 photons/㎟)에서 각각 24.4, 35.3, 39.2, 41.5, 43.4으로 광 플루언스가 증가할수록 점진적으 로 증가하였으며 이는 광 플루언스가 증가할수록 영상의 가독성이 향상됨을 나타낸다.