Chelate resin is a resin that has an exchange group which can form chelates with various metal ions. It shows higher selectivity for metal ions than ion exchange resin and can selectively remove characteristic metal ions. In an aqueous solution containing metal ions, chelate resin can adsorb specific metal ions, and the separated chelate resin can desorb the adsorbed metal ions by changing temperature or pH, so chelate resin has the advantage of being reusable. Chelate resin has been used industrially as an adsorbent to adsorb and separate heavy metal ions in wastewater, and is also used for the purpose of recovering precious or rare metals contained in industrial wastewater or industrial waste. Against this background, there is a need to develop chelate resins with higher adsorption capacity. Acrylic fiber is defined as a man-made fiber made from a linear synthetic polymer with fiberforming ability consisting of more than 85% acrylonitrile. It is a man-made fiber that is often used as a substitute for wool because it has good thermal insulation properties like wool and is warm and soft to the touch. It is a fiber rich in cyano groups due to its high content of acrylonitrile, and has the advantage of being able to be used as a variety of functional fibers through modification of cyano groups. In this study, the amination reaction of acrylic fiber was performed using diethylenetriamine, and the adsorption characteristics for metal ions were evaluated according to the reaction conversion rate. In order to improve the amination efficiency, 400 kGy was irradiated using a 2.5 MeV electron beam accelerator, and through this, the crosslinking rate of acrylic fiber was able to be improved up to 80%. Water and ethanol were used as cosolvents for the amination reaction in a ratio of 60/40 vol/vol, respectively, and a reaction yield of 178% was obtained after 120 minutes of reaction. Using the chelate resin prepared in this way, the adsorption performance for metal ions was evaluated through Atomic Absorption Spectrometry analysis.
For the synthesis of water soluble acrylic modified epoxyester resin, fatty acid/epoxy ratio of 50/50 was used, and introduced maleic anhydride. Ratio of styrene/acrylic acid of acrylic monomers was fixed 85/15 and ratio of epoxyester/acrylic monomer was controlled 80/20, 75/25, 70/30, 65/35, and degree of neutralization were changed 65%, 80%, to 100%. As a result, 40% solids acrylic modified epoxyester resins were synthesized. Resins were evaluated water soluble stability, drying time, water resistant, storage stability and physical properties. And the white paints were prepared, and were evaluated viscosity, drying time, water resistance, adhesion, sagging, spray workability, gloss, salt spray resistance, skinning, whiteness and flash rust. As a result, the degree of neutralization of 100% and the ratio of epoxyester/acrylic monomer of 75/25 showed the best properties.
국내의 경우 노후화된 콘크리트 포장에 대한 일반적인 유지보수 공법으로 아스팔트 덧씌우기 공법이 사용되고 있다. 그러나 기존 콘크리트 포장의 수명을 연장시키기 위한 아스팔트 덧씌우기 공법의 경우, 기존 포장과의 물리적 특성이 상이하여 반사균열, 포트홀 및 소성변형 등의 다양한 포장 파손이 발생하고 있는 실정이다. 이와 같은 문제점을 해결하기 위하여 아스팔트 덧씌우기 공법을 대처하기 위한 방안으로 콘크리트 덧씌우기 공법의 적용이 요구되고 있는 실정이다. 콘크리트 덧씌우기 공법은 사용 연한이 길고, 중차량에 대한 지지력이 우수하며, 소성변형이 발생하지 않으므로 유지보수 빈도 및 유지관리비를 현저히 줄일 수 있는 장점이 있다. 하지만 비교적 긴 양생기간으로 인하여 우회도로 가설 및 교통통제 등의 기술적인 문제가 발생한다. 따라서 본 연구에서는 충분한 작업성 확보 및 신속한 교통개방을 위하여 초속경 아크릴계 폴리머 개질 콘크리트를 사용하여 작업성, 내구성 및 환경저항성에 대한 평가를 통한 접착식 콘크리트 덧씌우기 공법의 적용성을 검토하였다. 조기 교통개방 특성 평가를 위한 강도측정 결과 재령 4시간 후 압축강도 21MPa, 부착강도 1.4MPa를 상회하는 결과를 확인하였다. 또한 환경하중 저항성 실험 결과 일반 포틀랜드 시멘트 콘크리트에 비해 매우 우수하여 내구성을 확보할 것으로 판단하였다. 따라서 본 연구를 통하여 초속경 아크릴계 폴리머 개질 콘크리트는 대규모 접착식 콘크리트 덧씌우기 공법에 적합한 재료로써, 충분한 작업성 및 신속한 조기 교통개방을 요구하는 유지보수 공법 적용이 가능할 것으로 판단된다.
To prepare weather-resistant modified silane acrylic resin coatings for an architectural purpose, tetrapolymers were synthesized by radical polymerization. 3-Methacryloxypropyltrimethoxysilane (MPTS) as a silicone monomer and n-butyl acrylate, methyl methacrylate, and n-butyl methacrylate as acrylic monomers were used. The composition of monomers was adjusted to fix the glass transition temperature of acrylic polymer for 20℃. The composition of MPTS in the synthesized polymer were varied from 10 wt% to 30 wt%. On the basis of synthesized resin amber paints were prepared and their physical properties and effects on weatherability were examined. The presence of MPTS in modified silane acrylic resins generally resulted in low molecular weight and broad molecular weight distribution, and also lowered the viscosity of the copolymers. The coated films prepared from these resins showed good and balanced properties in general. Adhesion to the substrate was outstanding in particular. Weatherability tests were carried out in three different types such as outdoor exposure, QUV, and SWO. The test results showed that the modified silane acrylic resins containing 30 wt% of MPTS had superior weathering properties.
To prepare weather-resistant silicone/acrylic resin coatings for an architectural purpose, tetrapolymers were synthesized by a radical polymerization. 3-Methacryloxypropyltrimethoxysilane (MPTS) as a silicone monomer and n-butyl acrylate, methyl methacrylate, and n-butyl methacrylate as acrylic monomers were used. The compositions of monomers were adjusted to fix the glass transition temperature of acrylic polymer for 20℃. The composition of MPTS in the synthesized polymer were varied from 10 wt% to 30 wt%. On the basis of synthesized resin amber paints were prepared and their physical properties and effects for weatherability were examined. The presence of MPTS in silicone/acrylic resins generally resulted in low molecular weight and broad molecular weight distribution, and also lowered the viscosity of the copolymers. The coated films prepared from these resins showed good and balanced properties in general. Adhesion to the substrate was outstanding in particular. Weatherability tests were carried out in three different types such as outdoor exposure, QUV, and SWO. The test results showed that the silicone/acrylic resins containing 30 wt% of MPTS had weather-resistant properties.
The purpose of this experimental study is to develop an waterborne silicon acrylic top finishing material of car parks. The gas toxicity test was conducted in order to provide fundamental data for developing the material by implementing modified polyamide resin. The outcomes were satisfied by the quality standard regarding elapsed mean stop times of mice which is prescribed in KS F 2271. As conclusion, this study confirmed that the developed finishing material could be an optimum material capable of applying for car parks’ deck.
The purpose of this experimental study is to develop the waterborne silicon acrylic finishing material of parking lots. Resistance-Wheel moving load test was conducted in order to supply basic datum for developing the material by implementing modified polyamide resin. As a result, all the specimens were satisfied by the quality standard regarding dynamic wheel load resistance which is prescribed in KS F 4937. As conclusion, this study confirmed that developed finishing material could be an optimum surface finishing material capable of applying for parking lots’ floors.
The purpose of this experimental study is to develop the waterborne silicon acrylic surface finishing material of parking lots. Adhesion strength experiment was conducted in order to enhance performance of the finishing material by adopting modified polyamide resin. The results qualified the standard regarding bond strength which is prescribed in KS F 4937. They are confirmed that the strength tend to increase as the amount of polyamide increased and could be an optimum surface finishing material applicable for parking lot floor.
The purpose of this study is to develop eco-friendly finishing materials of acrylic emulsion-modified mortars using lightweight aggregate carrier which contains pyroligneous liquid. Four types of light-weight aggregate carriers such as perlite, vermiculite, charcoal and zeolite are selected. The acrylic emulsion-modified mortars are prepared with light-weight carrier replacements to dolomite of 0, 5, 10, 15, 20%, and tested for flowability, adhesion in tension, water absorption coefficient and antibiosis. As a result, the flowability of acrylic emulsion-modified mortars using zeolite light-weight is improved with increasing light-weight carrier content. The adhesion in tension of acrylic emulsion-modified mortars using lightweight carrier is satisfied with KS requirement. Especially, the adhesion in tension of acrylic emulsion-modified mortars using light-weight aggregate carrier at a high temperature of 40oC are better than the low temperatures of 0oC and 20oC. The water absorption coefficient of acrylic emulsion-modified mortars using light-weight aggregate carriers is increased with increasing light-weight carrier content. However, the water absorption coefficient is satisfied with KS requirement. The antibiosis of acrylic emulsion-modified mortars using zeolite light-weight carrier is remarkably improved with increasing light-weight carrier content.