PURPOSES : In this study, a method to use magnesium phosphate ceramic (MPC) concrete for the surface maintenance of airport pavements with jointed concrete is developed.
METHODS : To investigate the application of a material incorporated with MPC for the surface maintenance of airport pavements with jointed concrete, structures with various cross-sections and thicknesses were constructed. The cross-section of the structure was modeled for the surface maintenance of four types of pavements and typical pavement construction processes, such as cutting, cleaning, production and casting, finishing, hardening, and joint reinstallation. Subsequently, the hours required for each process was determined.
RESULTS : The MPC concrete used for the surface maintenance of airport pavements with jointed concrete demonstrate excellent performance. The MPC concrete indicates a compressive strength exceeding 25 MPa for 2 h, and its hydration heat is 52.9 ℃~61.2 ℃. Meanwhile, the crushing and cleaning performed during the production and casting of the MPC require a significant amount of time. Specifically, for a partial repair process, a total of 6 h is sufficient under traffic control, although this duration is inadequate for a complete repair process.
CONCLUSIONS : MPC concrete is advantageous for the surface maintenance of airport pavements with jointed concrete. In fact, MPC concrete can be sufficiently constructed using existing concrete maintenance equipment, and partial repair works spanning a cross-sectional area of 11 m2 can be completed in 1 d. In addition, if the crushing and cleaning are performed separately from production and construction, then repair work using MPC concrete can be performed at a larger scale.
PURPOSES : In this study, the propriety of expansion joint spacing of airport concrete pavement was examined by using weather and material characteristics.
METHODS: A finite element model for simulating airport concrete pavement was developed and blowup occurrence due to temperature increase was analyzed. The critical temperature causing the expansion of concrete slab and blow up at the expansion joint was calculated according to the initial vertical displacement at the joint. The amount of expansion that can occur in the concrete slab for 20 years of design life was calculated by summing the expansion and contraction by temperature, alkali-silica reaction, and drying shrinkage. The effective expansion of pavement section between adjacent expansion joints was calculated by subtracting the effective width of expansion joint from the summation of the expansion of the pavement section. The temperature change causing the effective expansion of pavement section was also calculated. The effective expansion equivalent temperature change was compared to the critical temperature, which causes the blowup, according to expansion joint spacing to verify the propriety of expansion joint applied to the airport concrete pavement.
RESULTS: When an initial vertical displacement of the expansion joint was 3mm or less, the blowup never occurred for 300m of joint spacing which is used in Korean airports currently. But, there was a risk of blow-up when an initial vertical displacement of the expansion joint was 5mm or more due to the weather or material characteristics.
CONCLUSIONS: It was confirmed that the intial vertical displacement at the expansion joint could be managed below 3mm from the previous research results. Accordingly it was concluded that the 300m of current expansion joint spacing of Korean airports could be used without blowup by controling the alkali-silica reaction below its allowable limit.
The current construction and maintenance guidelines applied to airport pavement in Korea are those of the International Civil Aviation Organization (ICAO), the International Air Transport Association (IATA), and the Federal Aviation Administration (FAA). In order to consider local conditions of airports in Korea, more specific details should be addressed in those guidelines. For example, the design and construction for pavements at airports in Korea follow the specifications of materials for general roads or foreign airport pavement guidelines, as there is no design manual or guideline for the granular base and subbase materials for airport pavement in Korea. In such circumstances, the likelihood of premature failure or accelerated damage increases, as the loading from airplanes is not fully taken into account or the local environmental characteristics are not considered. In addition, concerns in public facility drainage systems have been rising recently in line with the increase in the frequency and scale, caused by the global abnormal-temperature phenomenon, of localized torrential rain and snow. For airport runways, measures to maintain swift drainage systems are especially necessary to ensure safety and prevent flight delays. In this study, the appropriate moisture content and pavement method are analyzed by applying porous concrete developed for a cement-treated base course for securing permeability of airport pavement at an actual construction site. In addition, on-site construction testing was performed to determine the appropriate compaction method and the curing method to minimize cracking by using a compaction facility. To determine the optimal moisture content, a quality-control was performed by measuring the moisture content of porous concrete produced at a batch plant. For this purpose, a speed moisture test (ASTM D 4944) was performed on site because the unit-water content of the porous concrete affects its compaction and finishing. Before compaction, a grader was used to remove fragments on the subbase and then a tandem roller was used to level and compact. After compaction, the porous cement-treated base course, called porous concrete, was placed using an asphalt finisher. The mechanical properties and durability of the porous cement-treated base course with a variation of a degree of compaction: noncompaction, tandem roller moved back and forth once, three times, and five times. The pavement was covered with vinyl according to the curing guidelines suggested by the Korea Expressway Corporation’s highway construction specifications, to prevent evaporation from porous concrete that has relatively low moisture content. After curing, the core was collected to analyze the compressive strength, permeability coefficient, porosity, and freeze–thaw resistance characteristics.
Airport concrete pavement slabs show contraction and expansion behavior due to environmental factors such as temperature and humidity. Among the various environmental factors, temperature is the most influential factor in the concrete slab. However, it is inadequate to consider air temperature or surface temperature as influential factors especially for airport concrete slabs with very large thicknesses. Therefore, this study intends to utilize the equivalent linear temperature difference calculated from the data of the thermometer embedded in 5 depths(50mm, 150mm, 250mm, 350mm, 450mm) on the airport concrete slab. Equivalent linear temperature difference is the temperature difference between the uppermost and lowermost part of the concrete slab, which shows the same behavior due to actual temperature. Since the upper part of the concrete slab is more affected by air temperature than the lower part, the daily temperature range is large. Therefore, the equivalent linear temperature difference increases during the day and decreases at night, and concrete slabs show curl-down during the day and curl-up at night. This daily variation of curling behavior causes a difference in HWD experimental results. The HWD(Heavy Weight Deflectometer) test is mainly performed to investigate the condition of the pavement. And the calculated values are deflection, ISM(Impact Stiffness Modulus), LTE(Load Transfer Efficiency). The equivalent linear temperature difference represents the behavior of the concrete slab by the environmental load, and the calculated values by the HWD test represent the behavior. Therefore, the purpose of this study is to investigate the behavior of concrete slab by combined load including environmental load and traffic load through correlation analysis between these values. This study was supported by Incheon International Airport Corporation(BEX00625) and Korea Airports Corporation.
Airport concrete slabs behave by combined loads including environmental loads and traffic loads. To analyze the behavior of concrete slabs by combined load, the dynamic strain gages were embedded at 2 depths(50mm, 450mm) and 3 locations(corner, Center and Mid-Edge). And the thermometers were embedded at 5 depths(50mm, 150mm, 250mm, 350mm, 450mm) in actual airport concrete slabs. HWD(Heavy Weight Deflectometer) is a device to measure the deflection by applying an impact load. The values calculated by the HWD test are deflection, ISM(Impact Stiffness Modulus), LTE(Load Transfer Efficiency). Concrete slabs tend to expand during the summer when the temperature is high, and contract during the winter when the temperature is low. In addition, the drying shrinkage occurs as age increases. Field HWD test were conducted in March, May, August, and November to examine seasonal and age-specific changes. Furthermore, the temperature difference between top and bottom of concrete slabs causes the curl-up and curl-down behavior. The test was conducted 3 times at 12o`clock, 16o`clock, 21o`clock, 3o`clock, 7o`clock to examine temporal changes. The strain of the slab at HWD strike was measured 500 times per second because the strain occurred instantaneously, and the temperature was measure 1 times per 10 minutes. The calculated values and the measured values varied according to environmental loads. In order to examine these values in various angles, the equivalent linear temperature difference obtained by converting the temperature by depth into the uppermost lowermost temperature difference, the temperature of the slab which changes seasonally as a whole, and the drying shrinkage which occurs as the age increases are considered. Therefore, the purpose of this study is to clarify the behavior of concrete slabs by combined load considering long - term drying shrinkage, annual variation of temperature, and daily variations. This study was supported by Incheon International Airport Corporation(BEX00625) and Korea Airports Corporation.
In this study, the effect of dry shrinkage of concrete pavement due to seasonal changes was analyzed by comparing the results of finite element analysis with the temperature and strain measurements at Incheon airport pavement. To measure the behavior of slab by environmental condition in site, static strain gauges and thermometers were installed. To predict changes in the properties of concrete slab, experiments were conducted in site as well as in the lab. The considered parameters of FEA were pavement conditions according to seasonal and material properties change. The results of field measurements and the strain by FEA analysis were different in terms of the effects of drying shrinkage. This is due to humidity changes not applied to input values during FEA analysis. In this study, the difference between the results of field measurements and the results of the finite element model analysis was used to identify the drying shrinkage occurring on the concrete slab. Long-term data analysis in the future will enable the analysis of the trends in drying shrinkage in airport concrete pavement. This study was supported by Incheon International Airport Corporation(BEX00625).
OBJECTIVES : This is a basic research for the domestic production of airport-airside deicers. This research selected basic materials for deicers appropriate for the pavement of domestic airports by evaluating the deicing performances of basic materials used in internationalstandard airport deicers and their impacts on pavements. METHODS: Laboratory investigation was conducted to evaluate the asphalt surface tensile strength, concrete scaling impact, ASR impact, and deicing performances of sodium formate (NaFm), potassium formate (KFm), sodium acetate (NaAc), and potassium acetate (KAc), which are the basic de-icing materials commonly used at international airports, approved by the FAA. In addition, the analyses were also performed on the airside deicer urea, which is currently used in domestic airports. RESULTS : Laboratory investigation confirmed that sodium formate, potassium formate, sodium acetate, and potassium acetate had superior surface tensile strength, concrete scaling impact, and deicing performance compared to airside urea, but they also had greater impacts on concrete ASR. Among these materials, sodium formate had the best asphalt surface tensile strength, concrete scaling impact, and deicing performance, while also having the greatest impact on ASR; hence, mitigation plans for ASR were needed, if it were to be used as airport-airside deicer. CONCLUSIONS : It is necessary to consider additional additives to prevent ASR of concrete pavements when developing airport-airside deicers using sodium formate, potassium formate, sodium acetate, and potassium acetate.
PURPOSES: This study aimed to analyze economic effect of recycled aggregate production on job-site airport pavement. METHODS: The validation of site recycling for waste concrete as economic efficiency is analyzed through the case study of site recycling at an O airport pavement construction. The break-even point for the cost of site recycling was estimated according to two different waste concrete processing methods such as job-site recycling and processing on commission (or plant). RESULTS: Job-site recycling cost decreases as the use rate of job-site recycled concrete aggregate increases, or the amount of concrete waste increases, but transporting distance decreases. It was shown in an O airport case that as the use rate of job-site recycled concrete aggregate exceeds 61.4 %, the job-site recycling cost is cheaper than the processing cost on commission. CONCLUSIONS : The results of this study can utilize basic data of feasibility for site recycling of waste concrete on airport pavement construction.