검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13

        1.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Along with the development of the automobile industry, the materials and processing technology of parts have also developed. In particular, various materials have been developed and applied to automobile bumpers, which are directly related to crash safety. In particular, the application of composite materials is expanding for weight reduction. In this study, a new composite material made of a mixture of carbon fiber and aramid fiber was developed and the possibility of application to an automobile bumper was reviewed, and significant results were obtained.
        4,000원
        4.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recent, fiber-reinforced composites have been widely used in many fields because of their excellent performance. In order to manufacture lightweight, high-performance, and inexpensive composites various laminated structures were designed. Six types of hybrid composites were fabricated with glass/basalt/aramid fibers by VARTM process. The effect of the laminated structure on the mechanical properties of composites was investigated through impact energy, tensile and bending strength. Compared to other conditions more higher impact energy was obtained when the aramid fibers were in the center position and more higher bending strength was obtained when the fibers are laminated in the order of increasing bending performance from top to bottom. The laminate structure did not affect tensile strength which mainly depends on the property of fibers.
        4,000원
        8.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 들어 아라미드 섬유 시트는 건설 산업에 쉽게 사용되고 있다. 아라미드 섬유 시트는 높은 특성강도 및 강성, 높은 부식 저항성능, 경량 및 자기적 투명성과 같은 많은 장점을 제공한다. 본 연구에서는 아라미드 섬유 시트의 난연성능 및 접착강도가 연구되었다. 아라미드 섬유 보강 콘크리트 기둥의 내화성능은 표준 및 외부화재 곡선에 대해 서로 다른 조합의 보드 두께와 종류로 제작된 6개의 실험체를 사용하여 연구되었다. 그 결과 아라미드 섬유 시트는 마감재료를 이용해서 한 시간의 내화성능을 가지는 것으로 나타났다.
        4,000원
        9.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 아라미드 스트립을 이용하여 영구거푸집을 제작하고 철근 콘크리트 기둥에 적용하여 성능을 평가하였다. 보강된 철근콘크리트 기둥의 구조거동을 평가하기 위하여 총 3개의 기둥을 제작하였다. 1개의 실험체는 무보강 실험체로서 비내진 상세의 기둥이며 다른 두 실험체의 경우 내진설계가 적용되거나 아라미드 섬유보강 영구거푸집으로 보강하였다. 기둥의 전형적인 성능평가를 위하여 일정한 축하중하에서 정적반복가력 실험을 수행하였다. 실험결과 무보강 실험체와 비교하여 전단 강도, 연성 및 에너지 소산능력을 증가시켰으며 반복하중으로 인한 강도 및 강성 저감에서 우수한 성능을 보였다. 따라서, 본 연구에서 제안한 아라미드 보강 영구거푸집은 기존 RC 기둥의 내진성능을 향상시킬 수 있을 것으로 판단된다.
        4,000원
        10.
        2018.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, redevelopment and reconstruction projects have caused problems such as depletion of natural aggregates, and the use of recycled aggregate is being reevaluated as an optimal alternative. Therefore, in this study, the mechanical and deformation characteristics of Environment-Friendly Recycled Coarse Aggregate (here after, EFRCA) concrete reinforced with para-aramid fiber with high strength and high elasticity are examined. The experimental main parameters were EFRCA replacement ratio (0, 30 and 50%) and para-aramid fiber volume fraction (0, 0.75 and 1.0%). Experimental results show that the EFRCA concrete has lower compressive strength than plain concrete. However, compared with the natural aggregate, the EFRCA concrete, which exhibited low material properties, showed almost the same performance as plain concrete, such as increased flexural strength and improved ductility by incorporating para-aramid fibers. Through the experiment, it is considered that the most suitable para-aramid volume fraction is 0.75%. Based on these results, the experimental results related to the performance degradation of EFRCA concrete containing para-aramid fibers are secured and basic data for determining the reuse possibility and reinforcement method of structures are presented.
        4,000원
        11.
        2019.04 서비스 종료(열람 제한)
        In this study, structural tests were performed for the para-aramid fiber-reinforced RC beams using Recycled Coarse Aggregates (RCA) according to the main parameters which are RCA replacement ratio (0 and 30%) and para-aramid fiber volume fraction (0, 0.75 and 1.0%). Experimental results show that by reinforcing para-aramid fibers, compared with the natural coarse aggregate, the RCA, which exhibited low structural performance, improved load carrying capacity and ductility.
        12.
        2018.10 서비스 종료(열람 제한)
        This paper presents the experimental results of flexural behavior of steel beam strengthened with Aramid fiber reinforced polymer plastic (FRP) strips subjected to static bending loading. Two H-beams were fabricated strengthened with aramid strips and one control specimen were also fabricated. Among of strengthened specimens, one specimen was strengthened with partial length of AFRP. From the test, it was observed that maximum increase of 16% was also achieved in bending-load capacity.
        13.
        2017.09 서비스 종료(열람 제한)
        The purpose of this study is determining the effects of flexural behavior of aramid fibers in ultra high performance concrete. The 10 kinds of aramid fibers with different length, diameter and twisting were used. The flexural behavior was determined by bending tests on specimens, which was prepared by mixing 1 % of volume fractions of aramid fibers into ultra high performance concrete mortar. Consequently, the load-displacement relationship curves were obtained by using the test results for each kinds of aramid. While the specimen that contains the small diameter of aramid fiber gives the strong flexural strength due to large contact area between the fiber and concrete matrix, that specimen by small diameter of aramid fiber does not guarantee the ductile behavior of specimen like the steel fiber. But the length and twisting of aramid fiber gives the ductile behavior of ultra high performance concrete flexural specimen.