Background: A breast cancer is the second leading cause of cancer death in women worldwide and among different types of breast cancers, triple-negative breast cancer (TNBC) has a poor prognosis. Methods: We investigated the potential of ginsenoside compound K (CK), an active ingredient in the bio-transformed ginsenoside, to be used as a therapeutic ingredient by examining the effects of CK on cell proliferation, apoptosis, and cancer-related gene expressions in breast cancer cells. Results: From the results of treating MCF-7, an ER and PR-positive breast cancer cells, and MDA-MB-231 (TNBC) with CK at a concentration of 0-100 μM, the half maximal inhibitory concentration (IC50) values for each cell were 52.17 μM and 29.88 μM, respectively. And also, it was confirmed that cell migration was inhibited above the IC50 concentration. In addition, fluorescence analysis of Apoptosis/Necrosis showed that CK induced apoptosis rather than necrosis of breast cancer cells. Through qPCR, it was confirmed that the expression of genes related to apoptosis and cell cycle arrest was increased in CK-treated breast cancer cells, and it acted more effectively on TNBC. However, the expression of genes related to tumor invasion and metastasis is also increased, so it is necessary to consider the timing of application of CK as a potential therapeutic anticancer compound. Conclusions: CK showed a stronger inhibitory effect in TNBC with poor prognosis but considering the high tumor invasion and metastasis-related gene expression, the timing of application of CK should be considered.
Compound K (20-O-β-(D-glucopyranosyl)-20(S)-protopanaxadiol)는 진세노사이드의 활 성성분이다. Compound K는 경구 투여 후 Rb1, Rb2 및 Rc가 사람의 장내 미생물의 β-glucosidase에 의 해 생물전환 과정을 거쳐 생성된다고 알려져 있다. 본 연구는 생물전환된 인삼농축액에서 얻은 compound K를 이용해 항염증 및 독성을 조사하였다. 세포독성평가 결과, compound K는 0.001∼1 μg/mL의 농도 범위에서 유의적인 세포독성은 나타나지 않았으며, LPS로 염증이 유발된 RAW 264.7 세포에서 TNF-α, MCP-1, IL-6 및 NO의 생성을 억제하는 것으로 확인되었다. 동일 농도범위에서 TNF-α 및 IFN-γ로 염증이 유발된 HaCaT 세포는 compound K의 처리로 인해 IL-8의 생성을 감소시키는 것으로 나타났지만, IL-6의 경우 일부 농도에서 생성을 감소시켰으나, 통계적인 유의성은 나타나지 않았다. Brine shrimp를 이 용한 치사율 검정법에서 compound K의 LC50는 0.37mg/mL로 다소의 독성을 함유하고 있는 것으로 나타 났으나 compound K가 35% 고함유된 생물전환물은 LC50가 0.87mg/mL로 나타나 상대적으로 낮은 독성 을 보였다. 따라서 이 생성물은 향후 여드름 완화용 화장품 개발에 사용할 수 있는 매우 우수한 기능성 소 재가 될 수 있을 것으로 기대된다.
진세노사이드 Compound K는 트라이터펜계 사포닌으로써 인삼의 잎, 줄기, 뿌리등에서 발견된다. 본 연구는 효소 Plantase를 이용하여 인삼 추출물로부터 고부가가치의 진세노사이드인 Compound K를 생산하는 연구를 하였다. Plantase는 인삼추출물에서 Compound K를 매우 효율적으로 생산함을 보여 주었다. 또한 다양한 온도와 pH에서 Compound K 생산에 대한 최적의 반응을 조사한 결과 pH 5, 50 ℃에서 가장 높은 효율을 보였다. 최적 조건에서 Compound K는 전체 추출물의 35%이상 농축될 수 있음을 확인 하였다. 생물전환된 Compound K 농축물의 항균효과를 검정한 결과 여드름균인 Cutibacterium acnes KCTC 3314에 선택적인 활성을 보였다. Compound K (35% 함유) 인삼 생물전환물의 C. acnes KCTC 3314 균주에 대한 최소저해농도 측정 결과 31.25ug/mL로 확인되었다. 따라서 향후 여드름균 완화용 화장품의 잠재적 소재로 사용될 수 있을 것으로 기대된다.
Compound K(ginsenoside M1) is one of saponin metabolites and has many benefits for human health. This study was to investigate Compound K produced from ginseng crude saponin extract with commercial cellulolytic complex enzyme(cellulase, β-glucanase, and hemicellulase) obtained from Trichoderma reesei. The effect factors(temperature, pH, ginseng crude saponin extract and enzyme concentration, and reaction time) on production of Compound K from ginseng crude saponin extract were determined by one factor at a time method. The selected major factor variables were ginseng crude saponin extract of 2%(w/v), enzyme of 7%(v/v), reaction time of 48 hr. Based on the effect factors, response surface method was proceeded to optimize the enzymatic bioconversion conditions for the desirable Compound K production under the fixed condition of pH 5.0 and 50℃. The optimal reaction condition from RSM was ginseng crude saponin extract of 2.38%, enzyme of 6.06%, and reaction time of 64.04 hr. The expected concentration of Compound K produced from that reaction was 840.77 ㎎/100 g. Production of Compound K was 1, 017.93 ㎎/100 g and 862.31 ㎎/100 g, by flask and bench-scale bioreactor(2.5ℓ) system, respectively.
The objective of this study was to prepare bioactive ginseng yogurts containing compound K, which is transformed from ginsenosides, and to investigate the compound’s cytotoxicity against tumor cells. Milk containng ginseng was fermented by Bifidobacteria KK-l and KK-2, and their activities for transforming ginsenosides to compound K were measured. Among the tested concentrations of ginseng in the milk, compound K was effectively produced in the 3% and 6% ginseng yogurts fermented for 48 hrs. These fermented ginseng yogurts were extracted with BuOH, and their cytotoxicities against tumor cells were examined. The BuOH extract of the yogurt made from the 3% ginseng milk showed cytotooxic activity against P388 and HeLa tumor cells. However, the nonfermented ginseng milk did not exhibit cytotoxicity against these cells. Therefore, we deem that the ginseng yogurt, which contained compound K, could be developed as a potential fermented drink product.
To study on antioxidant effects in the liver of 40-week-old mouse, the sample were orally pretreated 5mg/kg/day for 5 days with red ginseng saponin components(total saponin, protopanaxadiol saponin, protopanaxatriol saponin, ginsenoside-Rd, ginsenoside-Re, compound-K) for 5 days. The ability of saponin to protect the mouse liver from oxidative damage was examined by determining the activity of superoxide dismutase(SOD), glutathione peroxidase(GPx) and the contents of glutathione, the level of malondialdehyde, The only protopanaxadiol among the ginseng saponin fractions was significantly increased the hepatic SOD activity(p<0.01). The red ginseng saponin induced a slight increase of GPx activity, especially ginsenoside Rd, compound K and protopanaxatriol treatments significantly increased its activity. The content of glutathione was significantly increased by total saponin, protopanaxadiol and ginsenoside Rd(p<0.01), but the oxidized glutathione level was lowered in all the red ginseng saponin. Finally, the level of malondialdehyde was significantly decreased by ginsenoside Rd and protopanaxadiol. In conclusion, protopanaxadiol and ginsenoside Rd among the saponin fraction were especially increased in the activity of hepatic antioxidative enzyme and decreased the lipid peroxidation that was expressed in term of MDA formation. This comprehensive antioxidant effects of red ginseng saponin seems to be by a certain action of saponin other than a direct antioxidant action.
Ginseng (Panax ginseng) is frequently used in Asian countries as a traditional medicine. The major components of ginseng are ginsenosides. Among these, ginsenoside compound K has been reported to prevent the formation of malignancy and metastasis of cancer by blocking the formation of tumor and suppressing the invasion of cancer cells. In this study, ginsenoside Rb1 was converted into compound K, via secreted β-glucosidase enzyme from the Leuconostoc lactis DC201 isolated, which was extracted from Kimchi. The strain DC201 was suspended and cultured in MRS broth at 37℃. Subsequently, the residue from the cultured broth supernatant was precipitated with EtOH and then dissolved in 20 mM sodium phosphate buffer (pH 6.0) to obtain an enzyme liquid. Meanwhile, the crude enzyme solution was mixed with ginsenoside Rb1 at a ratio of 1:4 (v/v).The reaction was carried out at 30℃ and 190 rpm for 72 hours, and then analyzed by TLC and HPLC. The result showed that ginsenoside Rb1 was transformed into compound K after 72 hours post reaction.