Cordycepin (3'-deoxyadenosine) is a nucleoside analog known for its diverse range of biological activities. This study investigated the effect of different types of sawdust on the production of the bioactive compound cordycepin. The results of the study showed that different types of wood sawdust affected the biosynthesis of cordycepin and a significant increase was observed when the conventional SDB medium was replaced with 1% NaOH treated pine sawdust. To optimize cordycepin production from Paecilomyces tenuipes in a medium containing 1% NaOH-pretreated pine sawdust, we employed Response Surface Methodology (RSM) in its Box-Behnken design (BBD) canonical form. The optimal conditions were determined as follows: a particle size of 109.5111-mesh (140 m) for 1% NaOH-pretreated pine sawdust, an input weight of 21.1679 g/L, and an incubation time of 73.8423 hours. According to our model, this combination is expected to yield a maximum cordycepin content of 896.1428 g/mL. Experimental validation of this prediction was performed using the suggested optimal conditions, resulting in an average cordycepin content of 922.6771 g/mL across three replicates, thus confirming the model's accuracy.
This study aimed to verify the whitening effect of Cordyceps militaris, which is distributed in several countries worldwide, including Korea, Japan, and China, and has various medical effects. To screen the efficacy of C. militaris, the inhibitory activity of tyrosinase, which was 66% at a concentration of 1 mg/mL, was measured. Thereafter, the survival rate of melanoma cells was measured, and cell experiments were conducted at a concentration of 90% or more in which C. militaris was not toxic to cells. After measuring the inhibitory effect of TRP-1, TRP-2, tyrosinase protein, and mRNA expression, which are factors influencing melanin synthesis, C. militaris was found to decrease in all factors, with an expression level that was significantly lower compared to quercetin. This confirmed that C. militaris stimulated with LED has excellent whitening activity and can be used as a functional whitening cosmetics material.
Cordyceps militaris mycelium extracts containing high amounts of cordycepin were evaluated in vitro for their antiinflammatory and tumor cell growth-inhibitory activities. All extracts dose dependently inhibited the increased production of inflammatory mediators including reactive oxygen species (ROS), nitric oxide (NO), and β-hexosaminidase in lipopolysaccharide (LPS)-stimulated inflammatory cells. All extracts were evaluated for anti-proliferative activity against normal RBL-2H3 cells and diverse types of cancer cell lines, including HCT, MC5-7, U-87MG, AGS, and A549 cells. The extract showed the strongest growth inhibition (IC50 = 28.13 μg/mL) relative to vehicle-treated control cells against fibrosarcoma (MC5-7). We have demonstrated anti-inflammatory activity of C. militaris via inhibition of NO, ROS production, and β-hexosaminidase release in activated cells. C. militaris mycelium extract was also evaluated mechanistically and found to exert six types of anti-cancer activity, confirming its pharmacological potential. Our study suggests C. militaris use as a potential source of anti-inflammatory and anticancer agents. C. militaris may also be considered a functional food.
In this study, we investigated the effect of solid culture medium on the production of cordycepin in Cordyceps militaris. The regression equation was expressed as follows: Y1= 755.3-58.6625X1+4.79432E-14X2-46.6625X3-5.66269E-14X1X2- 0.025X1X3+1.62475E-14X2X3-160.6625X1 2+0.0125X2 2-206.9625X3 2, where, Y represents the value of cordycepin content (μg/g), X1 corresponds to the weight of M. alternatus in solid culture medium (g/bottle), X2 to the water content of the solid culture medium (%), and X3 to the culture period (day). The solid culture medium was optimized using the response surface methodology, and the optimal medium composition was as follows: the weight of M. alternatus in solid culture medium and water content were 16.2% and 100.7% (20.14 mL water/20 g solid culture medium), respectively, with a culture period of 39 days. Under these conditions, the cordycepin content of the fruiting bodies reached 150.0 μg/g (actual value). The supplementation of M. alternatus in solid culture for improved cordycepin content of C. militaris seems to be a promising alternative to wild and solid cultivation.
Light is an important factor for cordycepin production in Cordyceps militaris. We investigated the effects of different light-emitting diode (LED) conditions including various LED wavelengths and their combinations on cordycepin production in Cordyceps militaris cultivated in submerged culture. The results of our study showed that the combinations of LED wavelengths were more beneficial than single LED sources for cordycepin production. Among the three tested wavelength combinations, the greatest effects for cordycepin production were observed for the red:blue light combination at the wavelength ratio of 5:5 or 3:7. The optimal culture conditions were 19.2278 h/day of illumination time; 9.19497 g/50 mL of glucose content in the media; and 53.112 h of cultivation time. Our model predicted a maximum yield of 2860.01 μg/mL cordycepin. Finally, to verify the calculated maximum, we performed experiments in the culture media representing the obtained optimum combination and the cordycepin yield of 2412.5 μg/mL.
Cordycepin, a specific polyadenylation inhibitor, is the main functional component in Cordyceps militaris that is one of the top three renowned traditional Chinese medicines. In this study, we performed in vitro experiments to investigate the anti-invasive and anti-metastatic activities of cordycepin using human prostate carcinoma LNCaP cells. Cordycepin were administered and their effects on LPS-induced cell migration and invasion by wound healing migration assay, measurement of TER and In vitro invasiveness assay. Within the concentrations which were not cytotoxic effects, cordycepin caused a concentration-dependent suppression of LPS-induced cell migration and invasion. The anti-invasive activity of cordycepin was also found to be associated with increased tightness of the TJ, which was confirmed by an increase in TER. The activity of MMP-2 in LNCaP cells was dose-dependently inhibited by treatment with cordycepin, and this was also correlated with a decrease in expression of its mRNA and proteins, and up-regulation of TIMPs expression. Additionally, cordycepin repressed the LPS-induced NF-kB activation and phosphorylation of PI3K/AKT. Taken together, these findings suggest that cordycepin inhibited LPS-induced migration and invasion of LNCaP cells by down-regulating the expression and activity of MMP-2, and the possible targets may be NF-kB and PI3K/AKT.
[Background] Cordyceps militaris is a traditional popular mushroom, produces an important bioactive compound Cordycepin (3’-deoxyadenosine) used for the tonic and medicinal purpose in eastern Asia. Cordycepin is reported to possess many pharmacological activities including immunologically stimulating, anti-tumor, anti-virus, and anti-infection effects. [Methods] Growth inhibition of human leukemia cells was assessed by MTT assays. The determination of apoptotic cell death was performed by flow cytometry analysis, agarose gel electrophoresis and DAPI fluorescent staining methods. The apoptotic-regulated gene markers in both death receptor- and mitochondria-mediated apoptotic pathways were detected by RT-PCR and Western blot analysis etc. [Results] It was found that inhibition of cell proliferation was observed for human leukemia U937 and THP-1 cells treated with cordycepin in a dose-dependent manner. Cordycepin induced morphological change and apoptotic cell death such as formation of apoptotic bodies, DNA fragmentation and increased populations of apoptotic-sub G1 phase. Apoptosis of U937 and THP-1 cells by cordycepin was associated with a down-regulation of anti-apoptotic Bcl-2 and inhibitor of apoptosis proteins (IAPs) expression. Cordycepin treatment induced the proteolytic activation of caspase-3, caspase-8 and caspase-9, and a concomitant inhibition of poly(ADP-ribose) polymerase (PARP), β-catenin and phospholipase (PLC)-γ1 protein. Conclusions: Our results indicated that the apoptotic processes caused by cordycepin are mediated by the regulation of the Bcl-2 and caspase family in human leukemia U937 and THP-1 cells. Our data also suggested that cordycepin may be a potential chemotherapeutic agent for the treatment of leukemia cancer patients.
[Background] Cordyceps militaris, a traditional medicinal mushroom, produces a component compound, cordycepin (3’-deoxyadenosine). Cordycepin has been known to have many pharmacological activities including immunological stimulating, anti-cancer, and anti-infection activities. However, the molecular mechanisms of inflammatory mediator’s activity by cordycepin remain poorly understood. In the present study, we investigat-ed the effects of cordycepin on the anti- inflammation cascades in lipopolysaccharide (LPS)-stimulated BV2 microglia cells. [Methods] Cordycepin were administered and their effects on LPS-induced pro-inflammatory mediators and MAP kinases were monitored by Western blotting and RT-PCR analysis. [Result] Cordycepin significantly inhibited the production of nitric oxide (NO), prostaglandin E2 (PGE2), and pro- inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in a concentration- dependent manner without causing cytotoxicity. Also, cordycepin suppressed inducible NO, synthase (iNOS) and cyclooxygenase-2 (COX-2) expression on the mRNA and protein level. In addition, cordycepin suppressed NF-κB translocation by blocking IkappaB- α (IκB-α) degradation and inhibited the phosphorylation of Akt, ERK-1/2, JNK, and p38 kinase. Our results indicate that the inhibitory effect of cordycepin on LPS -stimulated inflammatory mediator production in BV2 microglia is associated with the suppression of the NF-κB, Akt, and MAPK signaling pathways. Conclusion: Anti-inflammatory properties of cordycepin may be useful for treating the inflammatory and deleterious effects of microglial activation in response to LPS stimulation.
Cordycepin (3’-deoxyadenosin), a polyadenylation specific inhibitor, is the main functional component in Cordyceps militaris which is one of the top three famous traditional Chinese medicine. It has been shown to possess many pharmacological activities including immunologically stimulating, anti-cancer, anti-bacterial, and anti-virus, anti-infection effects. However, its anti-cancer molecular mechanisms are poorly understood. In this study, the apoptotic effects by cordycepin were investigates in human leukemia cells. Treatment of cordycepin significantly inhibited cells growth in a concentrationdependent manner by inducing apoptosis, as evidenced by morphological change and apoptotic cell death such as formation of apoptotic bodies, DNA fragmentation and increased populations of sub-G1. Induction of apoptosis by cordycepin was associated with modulation of Bcl-2 and inhibitor of apoptosis proteins (IAP) family expression. Cordycepin also increased reactive oxygen species (ROS) generation, activation of casepase-3, caspase-8, caspase-9, cleavage of poly(ADP-ribose) polymerase (PARP), β-catenin and phospholipase C (PLC)-γ1 protein. The quenching of ROS generation by N-acetyl-L-cysteine administration, a scavenger of ROS, reversed the cordycepin-induced apoptosis effects. Theresults suggested that cordycepin may be a potential chemotherapeutic agent for the treatment of leukemia patients [This work was supported by Blue-Bio Industry RIC at Dong-Eui University as a RIC (08-06-07) program of ITEP under Ministry of Knowledge Economy].