This study presents distribution of naturally occurring radioactive materials in groundwater in Jeju island. Radon (222Rn) and potassium (40K) concentrations were performed by using Liquid Scintillation Counter and Ion Chromatograph respectively. In addition, the activities of uranium and thorium nuclides were analyzed by Inductively Coupled Plasma Mass Spectroscopy. Groundwater samples were collected from 9 sites of water intake facilities for wide area supply in Jeju island from September 2022 to September 2023. The 40K concentrations of groundwater ranged between 0.050 and 0.400 Bq·L-1. The radon concentrations in groundwater were in the range of 0 to 60 Bq L-1, and there was no groundwater exceeding the range of 148 Bq L-1 proposed by the US EPA. The distribution of uranium and thorium in groundwater varied from 0 to 500 ng L-1 and 0 to 2.4 ng L-1, respectively. The concentrations of uranium did not exceed 30 μg L-1, thresholds indicated by the US EPA. By analyzing the concentrations of 40K, 222Rn, 238U and 232Th, the annual effective dose of residents can be assessed. The evaluated residents’ effective dose from natural radionuclides due to intake of drinking water is less than the recommended value of 100 μSv y-1. Consequently, this study indicates that the cancer risks of the residents in Jeju island from naturally occurring radioactive materials ingested with water is insignificant.
Excessive nitrate content in drinking groundwater is one of the sources of nitrate-nitrogen that threatens humanhealth all over the world. Nitrate-nitrogen reduction technology is categorized into membrane filtration, electro-dial-ysis, ion exchange, adsorption, chemical methods, and biological methods according to the principle of eliminationfrom water. In particular, an adsorption technique is the most popular and common process because of its cost effec-tiveness, convenience, and effective adsorption. In this review, the application of conventional adsorbents used toreduce nitrate-nitrogen from drinking water is discussed and novel technologies on nitrate-nitrogen removal are intro-duced. Furthermore, the recent development of novel nitrate-nitrogen adsorbents from biopolymers such as chitosanand agricultural and industrial byproducts is reviewed.
The characteristics of drinking groundwater quality at Chung Cheong Nam Do was analyzed by investigating the 3,086 groundwater data which were carried out the water quality inspection from Jan. 1998 to Dec. 1998. It was found that all the mean concentration of items was not over the drinking water quality standard except Zn at Yeongee area. The highest mean concentration of nitrate was 8.2 ㎎/ℓ at Hongsung area. And the mean concentrations of nitrate and ammonium at Sucheon, Yesan, Yeongee were relatively higher. It was considered that the groundwater of that area was contaminated by breeding livestock as farm pollutants. The mean concentrations of chloride, hardness and evaporation residual at coastal regions were higher than inland regions. Especially the mean concentration of chloride was 2.5 times higher. It was considered that the groundwater at coastal regions was affected by seawater. It was found that the correlation between Fe and Mn was relatively high(r=0.776) and the correlation between hardness and evaporation residual was very high(r=0.983). The rainfall series and detection rate of E-coli had the hydrologic persistence. The correlation between the detection rate and rainfall series over 150 mm was very high (r=0.9146). Therefore it is surely required to control the groundwater sanitation in the rainy season.