검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 270

        41.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Doped porous carbon materials have attracted great interest owing to their excellent electrochemical performance toward energy storage applications. In this report, we described the synthesis of nitrogen-doped porous carbon (N-PC) via carbonization of a triazine-based covalent organic framework (COF) synthesized by Friedel–Crafts reaction. The as-synthesized COF and N-PC were confirmed by X-ray diffraction. The N-PC exhibited many merits including high surface area (711 m2 g−1), porosity, uniform pore size, and surface wettability due to the heteroatom-containing lone pair of electron. The N-PC showed a high specific capacitance of 112 F g−1 at a current density of 1.0 A g−1 and excellent cyclic stability with 10.6% capacitance loss after 5000 cycles at a current density of 2.0 A g−1. These results revealed that the COF materials are desirable for future research on energy storage devices.
        4,000원
        42.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, a simple nonenzymatic glucose sensor has been proposed based on coconut shell charcoal (CSC) modified nickel foil as working electrode in a three-electrode electrochemical cell. Charcoal was prepared by the pyrolysis of coconut shells. The most important advantages of coconut shells are cost-effectiveness and their abundance in nature. The morphology and phase of the CSC powder were characterized by scanning electron microscopy and X-ray diffraction. The electrochemical performance of the CSC powder coated Nickel foil electrode was investigated by cyclic voltammetry and chronoamperometry. The sensor shows a higher sensitivity of 2.992 mA cm−2 mM−1 in the linear range of 0.5–5.5 mM and slightly lower sensitivity of 1.1526 mA cm−2 mM−1 in the range of 7–18.5 mM glucose concentration with a detection limit of 0.2 mM. The anti-interference property of CSC powder also was investigated and found that the response of interfering species was less significant compared to glucose response. The proposed sensor offers good sensitivity, wide linear range, and a very low response to interfering biomolecules.
        4,000원
        43.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The carbon spheres (CSs) synthesized by an ultrasonic-spray pyrolysis method were activated for supercapacitor electrode. There are plenty of cracks on the surface of the activated carbon spheres (ACSs), which expend with increasing the activation temperature and activator dosage. The specific capacitance of ACSs increases with the activation temperature and activator dosage and reach to maximal value at certain conditions. Importantly, the ACS sample activated at relatively low activation temperature (600 °C) and 7 of mass ratio of KOH to CSs has the highest specific capacitance (about 209 F g− 1 at 50 mA g− 1 of current density) and indicates the excellent cycling stability after 1000 consecutive charge–discharge cycles. Furthermore, the graphene sheets could be found in the samples that were activated at 1000 °C. And the electrode prepared by the sample has the very low series resistance because of the excellent conductivity of the formed graphene sheets.
        4,000원
        44.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Most recently, graphene-related composite-modified electrode surfaces are been widely employed to improve surface interactions and electron transfer kinetics. Hydrothermally prepared strontium pyro niobate (SPN) and reduced graphene oxide/ strontium pyro niobate (RGOSPN) nanostructures reveal excellent morphology. X-ray diffraction analysis of SPN and RGOSPN agree with standard data. Thermogravimetry–differential scanning calorimetry analyses show that RGOSPN has higher thermal stability than SPN. In addition, from the polarization–electric field (P–E) loop measurements, the estimated value of remnant polarization (Pr) and coercive electric field (Ec) of SPN are 0.039 μC cm−2 and − 2.90 kV cm−1 and that of RGOSPN nanocomposite are 0.0139 μC cm−2 and − 2.04 kV cm−1. Cyclic voltammetry measurements show that RGOSPN nanocomposite manifests the possibility of electrochemical reversibility beyond long cycles without change in performance. The redox cycle reveal that RGOSPN can be used as part of a composite electrode for hybrid capacitors dynamic conditions. Moreover, the specific capacitance of SPN and RGOSPN was calculated using galvanostatic charge–discharge (GCD) technique. The observed energy density of 9.1 W h kg−1 in RGOSPN is higher when compared with previous reported values.
        4,800원
        45.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A carbon nanofiber was produced from the Areca catechu husk as a supercapacitor electrode, utilizing a chemical activation of potassium hydroxide (KOH) at different concentrations. One-stage integrated pyrolysis both carbonization and physical activation were employed for directly converting biomass to activated carbon nanofiber. The morphology structure, specific surface area, pore structure characteristic, crystallinity, and surface compound were characterized to evaluate the influence on electrochemical performance. The electrochemical performance of the supercapacitor was measured using cyclic voltammetry (CV) through a symmetrical system in 1 M H2SO4. The results show that the KOH-assisted or absence activation converts activated carbon from aggregate into a unique structure of nanofiber. The optimized carbon nanofiber showed the large specific surface area of 838.64 m2 g−1 with the total pore volume of 0.448 cm3 g−1, for enhancing electrochemical performance. Beneficial form its unique structural advantages, the optimized carbon nanofiber exhibits high electrochemical performance, including a specific capacitance of 181.96 F g−1 and maximum energy density of 25.27 Wh kg−1 for the power density of 91.07 W kg−1. This study examines a facile conventional route for producing carbon nanofiber from biomass Areca catechu husk in economical and efficient for electrode supercapacitor.
        4,300원
        46.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Vertically Aligned Carbon Nanotubes (VACNTs)-coated flexible aluminium (Al) foil is studied as an electrode for supercapacitor applications. VACNTs are grown on Al foil inside thermal Chemical Vapor Deposition (CVD) reactor. 20 nm thick layer of Fe is used as a catalyst while Ar, H2 and C2H2 are used as precursor gases. The effect of growth temperature on the structure of CNTs is studied by varying the temperature of CVD reactor from 550 °C to 625 °C. Better alignment of VACNTs arrays on Al foil is recorded at 600 °C growth temperature in comparison to other processing temperatures. Cyclic voltammetry results shows that VACNTs-coated Al foil has a specific capacitance of ~ 3.01 F/g at a scan rate of 50 mV/s. The direct growth of VACNT array results in better contact with Al foil and thus low ESR values observed in impedance spectroscopy analysis. This leads to a fast charge–discharge cycle as well as a very high value of power density (187.79 kW/ kg) suitable for high power applications. Moreover, wettability study shows that the fabricated VACNT electrode has a contact angle of more than 152° which signifies that it is a superhydrophobic surface and hence shows lower specific capacitance in comparison to reported values for VACNT array. Therefore, it is necessary to develop suitable post-processing strategies to make VACNTs hydrophilic to realize their full potential in supercapacitor applications.
        4,000원
        47.
        2021.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, the electrochemical behavior of Sm on the binary liquid Al-Ga cathode in the LiCl-KCl molten salt system is investigated. First, the co-reduction process of Sm(III)-Al(III), Sm(III)-Ga(III), and Sm(III)-Ga(III)-Al(III) on the W electrode (inert) were studied using cyclic voltammetry (CV), square-wave voltammetry (SWV) and open circuit potential (OCP) methods, respectively. It was identified that Sm(III) can be co-reduced with Al(III) or Ga(III) to form AlzSmy or GaxSmy intermetallic compounds. Subsequently, the under-potential deposition of Sm(III) at the Al, Ga, and Al-Ga active cathode was performed to confirm the formation of Sm-based intermetallic compounds. The X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) analyses indicated that Ga3Sm and Ga6Sm intermetallic compounds were formed on the Mo grid electrode (inert) during the potentiostatic electrolysis in LiCl-KCl-SmCl3-AlCl3- GaCl3 melt, while only Ga6Sm intermetallic compound was generated on the Al-Ga alloy electrode during the galvanostatic electrolysis in LiCl-KCl-SmCl3 melt. The electrolysis results revealed that the interaction between Sm and Ga was predominant in the Al-Ga alloy electrode, with Al only acting as an additive to lower the melting point.
        4,900원
        48.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Engineering the microstructure of the carbonaceous materials is a promising strategy to enhance the capacitive performance of supercapacitors. In this work, nanostructured Black Pearl (1500 BP) carbon which is a conductive carbon being commercially used in printing rolls, conductive packaging, conductive paints, etc. is analyzed for its feasibility as an electrode material for Electric Double-Layer Capacitors (EDLCs). To achieve that commercial Black Pearl (BP), carbon is treated with mild acid H3PO4 to remove the impurities and enhance the active sites by regulating the growth of agglomerates and creating micropores in the nano-pigments. Generally, the coalescence of nanoparticles owing to their intrinsic surface energy has tendency to create voids of different sizes that act like meso/micropores facilitating the diffusion of ions. The electrochemical performance of BP carbon before and after chemical activation is investigated in aqueous ( H2SO4, KOH and KCl) and a non-aqueous electrolyte (1 M TEMABF4 in acetonitrile) environment employing different electrochemical techniques such as Cyclic Voltammetry (CV), Galvanostatic charge/discharge (GCD) and Electrochemical Impendence Spectroscopy (EIS). The chemically activated BP carbon delivers the highest specific capacitance of ∼156 F g−1 in an aqueous electrolyte, 6 M KOH. The highest specific power, ~ 15.3 kW kg−1 and specific energy, 14.6 Wh kg−1 are obtained with a symmetric capacitor employing non-aqueous electrolyte because of its high working potential, 2.5 V.
        4,000원
        49.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we developed a facile and template-free strategy for the preparation of activated porous carbon beads (APCBs) from polyacrylonitrile. The chemical activation with KOH was found to enhance the pore properties, such as specific surface area (SSA), pore volume, and pore area. The APCBs exhibited a large SSA of 1147.99 m2/g and a pore area of 131.73 m2/g. The APCB-based electrodes showed a good specific capacitance of 112 F/g at 1 A/g in a 6 M KOH electrolyte, and excellent capacitance retention of 100% at a current density of 5 A/g after 1000 cycles. Therefore, the APCBs prepared in this study can be applied as electrode materials for electric double-layer capacitors.
        4,000원
        50.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The porous carbons with high specific surface area and excellent electrochemical properties were prepared using three types of green needle coke as raw materials. Electrochemical performances of the porous carbons derived from different microstructure green needle coke were investigated. The XRD and Raman spectra demonstrated that the content of the ordered carbon microcrystals were decreased and the content of amorphous and cross-linked structure were increased in the porous carbons with comparison to the raw materials. The results of N2 adsorption–desorption analysis verified that the content of ordered microcrystalline structure in the raw materials evidently influence the specific surface area and pore size distribution of the porous carbons. The porous carbon with 1665 m2 g−1 specific surface area and 2.89 nm average pore size has shown that the specific capacitance was 288 F g−1 at the current density 1 A g−1. Furthermore, the capacity retention was 94.93% and the Coulombic efficiency was 92.87% after 5000 charge/discharge cycles.
        4,000원
        51.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Necessity of novel energy storage devices extensively increased due to consumption of high power in various devices. To address the issues, in this report, we are addressing with a composite Iron Sulfide/reduced Graphene Oxide ( Fe3S4/rGO) synthesized using the standard solvothermal method. X-ray diffraction and Field Emission Scanning Electron Microscope analysis results confirmed that Face-Centered cubic crystal structure of Fe3S4 and rGO’s surface is decorated with a mean diameter of < 50 nm Fe3S4 respectively. Transmission Electron Microscopy images show further evidence that dispersed Fe3S4 on the rGO surface. Fe3S4/ rGO exhibits specific capacitance of 560 F/g than its individual counterparts ( Fe3S4 = 200 F/g and rGO = 145 F/g) at 1 A/g of current density and maximum cyclic stability of 91% capacitance retention after 2000 cycles that may be the influence of synergy between the composite materials.
        4,000원
        52.
        2020.12 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        신축성 전극을 다양한 소재와과 방식을 통해 제조되고 있으며 많은 기계적 특성 분석이 연구되고 있다. 은, 구리, 금, 나노와이어 등 다양한 금속이나 CNT, graphene, 플러렌 등을 기반으로 연구되고 있으며 대부분 높은 전도성과 신축특성을 요구하는 어플리케이션에 사용되지만 고가라는 단점이 있다. 본 연구에서는 저비용 소재와 공정으로 높은 신축특성과 반복 특성을 보유한 신축성 전극을 개발하였다. 값싼 전도성 탄소 와 흑연을 혼합하여 페이스트를 개발하였고 개발된 페이스트를 메탈마스크 인쇄 공정을 통해 TPU기판 위에 인쇄하였고 120℃에서 2시간 경화를 진행하였다. 이렇게 개발된 전극을 인장 시험과 인장 반복 시험을 통해 특성을 증명하였고 향후 어플리케이션 적용 가능여부를 확인하기 위해 무릎에 임시로 고정 후 간이 시험을 진행한 결과 20회 반복하는 동안 일정한 저항 변화를 보여줬다.
        4,000원
        54.
        2020.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The photovoltaic properties of perovskite solar cells (PSCs) with a carbon electrode fabricated using different annealing processes are investigated. Perovskite formation (50 oC, 60 min) using a hot-plate and an oven is carried out on cells with a glass/fluorine doped TiO2/TiO2/ZrO2/carbon structure, and the photovoltaic properties of the PSCs are analyzed using a solar simulator. The microstructures of the PSCs are characterized using an optical microscope, a field emission scanning electron microscope, and an electron probe micro-analyzer (EPMA). Photovoltaic analysis shows that the energy conversion efficiency of the samples fabricated using the hot-plate and the oven processes are 2.08% and 6.90%, respectively. Based on the microstructure of the samples and the results of the EPMA, perovskite is formed locally on the carbon electrode surface as the γ-butyrolactone (GBL) solvent evaporates and moves to the top of the carbon electrode due to heat from the bottom of the sample during the hot plate process. When the oven process is used, perovskite forms evenly inside the carbon electrode, as the GBL solvent evaporates extremely slowly because heat is supplied from all directions. The importance of the even formation of perovskite inside the carbon electrode is emphasized, and the feasibility of oven annealing is confirmed for PSCs with carbon electrodes.
        4,000원
        55.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The molybdenum cup and molybdenum pin, which are the main materials of the molybdenum electrode used for the LCD BLU CCFL electrode, have not been developed in Japan and all of them are imported and used from Japan, is giving a competitive burden. In this research, to develop the manufacturing technology of molybdenum pin used for CCFL electrode of LCD BLU, development of linear processing technology, development of molybdenum wire surface treatment technology, development of wire cutting technology, production of molybdenum pin, design and fabrication of JIG and Fixture for inspection, molybdenum pin prototyping and analysis, and development of 100% molybdenum pin inspection technology. In this paper, especially, research on prototype manufacturing and CAE analysis is treated.
        4,000원
        56.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The molybdenum cup and molybdenum pin, which are the main materials of the molybdenum electrode used for the LCD BLU CCFL electrode, have not been developed in Japan and all of them are imported and used from Japan, is giving a competitive burden. In this research, the CCFL electrode of LCD BLU is used to develop the manufacturing technology of molybdenum pin. The development of linear processing technology is used to that. The development of molybdenum wire surface treatment technology is used to that. The development of wire cutting technology is ued to that. The design and fabrication of JIG and Fixture for inspection is used to that. The molybdenum pin prototyping and analysis is used to that and finally, the development of 100% molybdenum pin inspection technology is used to that. In this paper, especially, research on design technology of wire cutting is treated.
        4,000원
        57.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Spot welding is a representative process in automotive welding and the application of intelligent systems is accelerating. In particular, in the case of welding electrode management, the timing of electrode wear and dressing was determined by continuous spot welding evaluation, however there is concerned that errors in welding equipment or processes may work in a complex manner. In this study, a dynamic resistance waveform sensing and image measurement system that greatly affects the nugget formation, which is important to the quality of spot welding, was fabricated and used. Based on the experimental data of the galvanized steel sheet, an electrode life prediction algorithm for electrode wear was derived through CNN(Convolutional Neural Network) model of machine learning training.
        4,000원
        58.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Free-standing hybridized electrode consisting of double-walled carbon nanotubes (DWNTs) and activated carbon have been fabricated for flexible supercapacitor applications. The xanthan-gum, used in our methodology, showed high ability in dispersing the strongly bundled DWNTs, and was then effectively converted to activated carbon with large surface area via chemical activation. The homogeneously dispersed DWNTs within xanthan-gum derived activated carbon acted as both electrical path and mechanical support of electrode material. The hybridized film from highly dispersed DWNTs and activated carbon was mechanically strong, has high electrical conductivity, and exhibited high specific capacitance of 141.5 F/g at the current density of 100 mV/s. Our hybridized film is highly promising as electrode material for flexible supercapacitors in wearable device.
        4,000원
        59.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Polypyrrole (PPy) decorated on reduced graphene oxide (rGO) films is successfully prepared with pyrrole (Py) monomers and rGO through one-step combining oxidation with polymerization reaction. Compared with the pure individual components, rGO/PPy compound turns out better electrochemical characteristics owing to the introduction of rGO sheets, which improves the specific surface area and the conductivity of composite material. When the amount of rGO is 10% of the total, the rGO/PPy compound delivers the best capacitance of 389.3 F g−1 at 1.0 A g−1 in a three-electrode system and 266.8 F g−1 at 0.25 A g−1 in the symmetric supercapacitor system. In addition, asymmetric device (rGO/PPy//AC) has been successfully fabricated using optimized rGO/PPy compound as positive electrode, activated carbon as negative electrode (AC) and 1 M Na2SO4 aqueous solution as electrolyte. The device obtains long cycle stability under the high-voltage region from 0 to 1.6 V, meanwhile displaying the satisfied energy density of 19.7 Wh kg−1 at 478.1 W kg−1. Besides, the rGO/PPy//AC device presents satisfactory rate capability and long life time.
        4,000원
        60.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The molybdenum cup and molybdenum pin, which are the main materials of the molybdenum electrode used for the LCD BLU CCFL electrode, have not been developed in Japan and all of them are imported and used from Japan, is giving a competitive burden. In this research, to develop the manufacturing technology of molybdenum pin used for CCFL electrode of LCD BLU, development of linear processing technology, development of molybdenum wire surface treatment technology, development of wire cutting technology, production of molybdenum pin, design and fabrication of JIG and Fixture for inspection, molybdenum pin prototyping and analysis, and development of 100% molybdenum pin inspection technology. In this paper, especially, research on surface treatment technology of molybdenum wire is treated.
        4,000원
        1 2 3 4 5