Curcumin is not soluble in water. Therefore, curcumin emulsion that can dissolve well in water were prepared using multi-emulsification technology, and the antioxidant activities and physical properties of emulsion were measured. Although curcumin was not dissolved in water, it was confirmed to be well dispersed in water when prepared in an aqueous dispersion curcumin emulsion. After dissolving curcumin using water and ethanol as solvents, respectively, the DPPH and ABTS radical scavenging abilities of the filtrate and the curcumin emulsion were measured. Because it was not dissolved in water, activities were not shown. However, when curcumin was dissolved in ethanol, the activities increased as the concentration of curcumin increased. On the other hand, when the curcumin emulsion was dissolved in water, it was found to have abilities. The curcumin emulsion was nano-homogenized and the size and distribution of the emulsified spheres were measured. It was confirmed to be nano-sized as it appeared as 9.083 nm/100%. In the results of the DPPH radical and ABTS radical scavenging abilities of curcumin nano-emulsion, it was confirmed that there was no change in the antioxidant abilities. In conclusion, water-dispersible curcumin prepared using multi-emulsification technology, and it was confirmed to exhibit antioxidant activity and emulsion stability.
SPG (Shirasu porous glass) 원통형 막을 회전 시키는 회전 막유화를 사용하여 칼슘 알지네이트 미소 구체를 제조 할 때, 단분산 미소 구체를 제조하기 위한 회전 막유화 공정변수들의 최적 조건을 결정하였다. 회전 막유화의 공정 변수로는 막의 회전 속도, 막간 압력차, 연속상에 대한 분산상의 비율, 알지네이트 농도, 유화제의 농도, 안정제 농도, 가교제 농도 및 막의 세공 크기를 설정하고, 이들 변수로 제조된 알지네이트 미소 구체의 크기와 단분산성에 미치는 영향을 검토하였다. 이 결과 회전 막유화의 공정 변수들 중에서 막모듈의 회전 속도, 유화제의 농도, 가교제의 농도가 증가 할수록 미소 구체의 크기 가 감소하였으며, 반면에 연속상에 대한 분산상의 비율, 막간 압력차, 알지네이트 농도가 증가할수록 미소 구체의 크기가 증 가하였다. 세공 크기 3.2 μm인 SPG막을 사용한 회전 막유화에서 공정변수 조절을 통해 최종적으로 입자 크기가 4.5 μm의 단분산 알지네이트 미소 구체의 제조가 가능하였다.
Liquid crystals offer plenty of useful activities as improving the stability of emulsion, increasing moisturizing power, drug release, improving skin feeling and visual effect for cosmetics fields. In order to prepare stable semi-transparent gel emulsion, liquid crystal emulsification method was used. The emulsion stabilities of systems containing glycerin, fatty alcohols, surfactants, water and oil were investigated at various temperatures as time passed. The stabilities of all emulsions were evaluated by means of a polarizing microscope, SEM, rheometer, colorimeter and DSC. Even though the samples stored at 50℃ thermostatic chamber were occurred the reduction of hardness, turbidity and △H and the peak shift, the semi-transparent gel emulsion was very stable without separation between water and oils phase in emulsion
막유화(membrane emulsification, ME)는 SPG 막과 같이 균일한 크기의 세공을 갖는 막을 사용하여 좁은 입도분 포의 에멀젼을 제조하는 기술이다. 본 연구에서는 막유화법으로 형성시킨 다중 에멀젼을 사용하여 폴리카프로락톤(PCL) 마 이크로캡슐의 제조를 연구하였다. 먼저 초음파 유화기로 W1/O 단일 에멀젼을 제조한 후, premix 막유화를 적용하여 W1/O/W2 다중 에멀젼을 형성시킨 후 용매 증발을 통해 모델 약물인 BSA가 담지된 PCL 마이크로캡슐을 제조하였다. 연속상 에 대한 분산상의 비율(D/C ratio), PCL 농도, 유화제 농도, 모델 약물의 농도, 막간 압력차 등 막유화 변수가 제조된 마이크 로캡슐의 입경과 입도 분포에 미치는 영향을 실험하였다. Premix-ME를 적용하여 평균 입경 5~6 μm의 균일한 크기를 갖는 모델 약물 BSA의 함침량이 약 26%인 다중 코어형 PCL 마이크로캡슐을 제조할 수 있었다.
The membrane emulsification (ME) is a technology for producing emulsions with narrow size distribution by using the well-defined porous membranes such as the SPG membrane. In this work, the preparation of polycaprolactone (PCL) microcapsules by using the multiple emulsion membrane emulsification method was studied. After the making of W1/O single emulsions by sonication, then W1/O/W2 multiple emulsions were prepared by ME method. The effects of various parameters such as the ratio of disperse/continuous phase (D/C ratio), the contents of PCL, emulsifier and model drug and the transmembrane pressure on the size and distribution of PCL microcapsules were investigated. The uniform PCL microcapsules with about 5~6 μm of mean size were obtained. The model drug (BSA) release properties of the obtained PCL microcapsules also were tested.
최근들어 에너지 고갈로 인해 에너지 저장 및 대체 에너지에 대한 관심이 점차 높아 지고 있다. 이로 인해 상변화 물질을 이용한 에너지 저장 및 이동에 대한 연구가 활발히 진행 되고 있다. 본 연구에서는 SPG막(Shirasu porous glass membrane)을 통한 막유화법을 이용하여 상변화 물질인 파라핀계 루비덤® (RT-21과 RT-24)을 분산상으로 하여 단분산성 마이크로 입자를 제조하고, 외부를 실리카로 코팅하여 열정 안정성을 향상시키고 열적 특성을 조사하였다. 단분산성 루비덤® 입자의 제조를 위해 분산상 압력, 유화제 농도, 루비덤®과 실리카의 비율을 변수로 하여 평균 입자 크기 7-8 μm를 얻었다. Differential scanning calorimetry (DSC)와 Thermogravimetry analysis (TGA)를 이용하여 열적 안정성과 잠열 등의 열적 특성을 조사하였고, Particle size analyzer (PSA), Scanning electron microscopy (SEM), optical microscopy를 이용하여 입자 분포와 캡슐화 유무를 확인하였다. 또한, Fourier transform infrared spectroscopy (FT-IR)를 통하여 정성분석을 시행하였다. 결과적으로, 막유화법을 이용하여 얻은 실리카 코팅된 단분산성 루비덤® 입자는 향상된 열적 안정성을 보였으며, 순수한 루비덤®의 80% 이상의 잠열을 유지하는 것을 보여 기존의 상변화 물질의 상안정성을 보완하여 열저장성 기능성 벽지와 건축물, 인테리어 제품에 사용 가능함을 알 수 있었다.
세공 크기가 2.6 μm인 SPG (Shirasu porous glass) 막이 설치된 실험실 규모의 막유화 장치를 사용하여 막유화 에멀젼-겔 공정의 변수 조절을 통해 구형상의 실리카 입자를 제조하였다. 막유화 에멀젼-겔 공정의 변수로는 분산상 압력, 연속상 내 안정제 및 유화제의 농도, H2O/TEOS 비율 및 연속상에 대한 분산상의 비율로 설정하고, 이들 변수가 제조된 실리카 입자의 크기와 분포에 미치는 영향을 검토하였다. 막유화의 공정변수들 중에서 분산상 압력과 연속상에 대한 분산상의 비가 증가할수록 실리카 입자의 크기가 증가하였다. 반면 안정제 및 유화제의 농도, H2O/TEOS 비가 증가할수록 입자의 크기가 감소하였다. 막유화 에멀젼-겔 공정변수의 조절을 통해 최종적으로 평균 입자 크기가 3 μm인 비교적 입도분포가 균일한 구형상의 실리카 입자 제조가 가능하였다.
세공경 1.5μm인 SPG (Shirasu porous glass) 막이 설치된 실험실 규모의 막유화 장치를 사용하여 구(球) 형상의 단분산 실리카 마이크로겔을 제조하기 위한 막유화 공정변수의 최적조건을 결정하였다. 막유화의 공정변수로는 분산상 내규산소다의 농도, 분산상 압력, 연속상에 대한 분산상의 비율, 연속상 내 유화제의 농도, 연속상의 교반속도로 설정하고, 이들 변수가 제조된 실리카 마이크로겔의 입자 크기와 분포에 미치는 영향을 검토하였다. 막유화의 공정변수들 중에서 연속상에 대한 분산상의 비율, 분산상 압력 및 분산상 내 규산소다의 농도가 증가할수록 겔 입자의 크기가 증가하였다. 반면 유화제의 농도와 연속상의 교반속도가 증가할수록 겔 입자의 크기가 감소하였다. 막유화의 공정변수 조절을 통해 최종적으로 평균 입자 크기가 6 μm인 입도분포가 균일한 구 형상의 실리카 마이크로겔을 제조할 수 있었다.
SPG (Shirasu porous glass) 관형 막이 설치된 회분식 막유화 장치를 사용하여 이온성 약물이 담지된 단분산 polycaprolactone (PCL) 마이크로캡슐을 제조하기 위한 막유화 공정변수의 최적조건을 결정하였다. 마이크로캡슐에 담지된 이온성 약물로는 양이온성인 lidocaine-hydrochloride, 중성인 sodium salicylate와 음이온성인 4-acetaminophen의 3가지를 사용하였으며, PCL 마이크로캡슐로부터 이들 모델약물의 방출거동을 검토하였다. 캡슐제조에 사용된 PCL의 농도와 분자량, 막간 압력차, 분산상과 연속상에 첨가시킨 유화제의 농도, 연속상의 교반속도가 막유화법으로 제조된 PCL 캡슐의 크기와 크기분포에 미치는 영향을 검토하였다. 이들 공정변수의 조절을 통해 평균 크기 약 5 μm의 균일한 마이크로캡슐을 제조할 수 있었다. 약물 방출실험 결과 산성조건에서 알칼리조건으로 방출환경이 변화됨에 따라 약물 방출속도가 증가하였다.
SPG (Shirasu porous glass) 관형 막이 설치된 회분식 막유화 장치를 사용하여 단분산 칼슘 알지네이트 미립자를 제조하기 위한 막유화 공정변수의 최적조건을 결정하였다. 막유화의 공정변수로는 연속상에 대한 분산상의 비율, 알지네이트 농도, 유화제의 종류와 농도, 안정제 농도, 가교제 농도, 교반속도, 막간 압력차 및 SPG 막의 세공크기로 설정하고, 이들 변수가 제조된 알지네이트 미립자의 입자 크기와 분포에 미치는 영향을 검토하였다. 막유화의 공정변수들 중에서 연속상에 대한 분산상의 비율, 막간 압력차 그리고 알지네이트 농도가 증가할수록 미립자의 크기가 증가하였다. 반면 유화제의 농도, 교반속도 그리고 가교제의 농도가 증가할수록 미립자의 크기가 감소하였다. 세공 크기 2.9mum인 SPG막을 사용한 경우 막유화의 공정변수 조절을 통해 최종적으로 평균 입자 크기 6mum, 크기 분산도 1.1인 단분산 알지네이트 미립자의 제조가 가능하였다.
Alkyl polyglucosides were synthesized by solvent-free glycosidation using ultrasonic emulsification. We examined glycosidation conditions of fatty alcohol with glucose hydrate and anhydrous glucose in the presence of p-toluenesulfonic acid. Glucose was emulsified in a molar excess of fatty alcohol for 20 minutes with a ultra-sonicator at room temperature and converted in a stirred reactor to more than 95% polyglucoside within 2.5~3.5 hr under 20~30 mmHg at 110℃ with a three-fold molar ratio of fatty alcohol to glucose in the presence of 1mol% p-toluenesulfonic acid. It was possible to obtain a polyglucoside mixture of HLB 13 consisting of 65% monoglucoside and 35% oligoglucoside with less than 1% of fatty alcohol.
The emulsion stability of W/O emulsion prepared by D phase emulsification during storage and handling is studied by using phase diagrams. The process of D phase emulsification begins with the formation of isotropic surfactant solution, followed by formation of oil-in-surfactant (O/D) gel emulsion by dispersion of octamethylcyclotetrasiloxane(OMCS) in the surfactant solution. Polyols were essential components for this purpose. To understand the function of polyols, the solution behavior of nonionic surfactant/oil/water/polyol systems were investigated by the ternary phase diagrams of polyoxyethylene oleyl ether/OMCS/propylene glycol(PG) aqueous solutions. The addition of PG increased the solubility of oil in the isotropic surfactant phase. D phase emulsification method has been applied to a new type of cosmetics. By using this emulsification technique, O/W emulsion were formed without a need for adjust of HLB. Fine and stable W/O emulsions were prepared by D phase emulsion.
본 연구에서는 원하는 입자크기가 폴리부타디엔 라텍스를 제조하는 방법으로 공정조절이 쉽고 균일한 입자를 얻을 수 있는 막유화법을 이용하였으며, 유화제의 종류와 양, 첨가제의 양, 압력 등을 변수로 하여 실험을 행하였다. 제조된 라텍스의 입자크기와 분포를 분석하였으며, homogenizer를 이용한 직접유화법의 결과와 비교하였다. 또한 막투과 모델을 고찰하기 위하여 Harkins-Brown 식에 의해 이론적인 drop의 크기를 계산하였다. 실험결과 물대비 0.2 wt% 이상의 유화제 함량에서 안정한 라텍스를 얻을 수 있었고, 입자크기를 결정하는 가장 핵심적인 인자는 막표면의 기공 크기임을 알 수 있었다.
아스코르빅산(비타민 C)은 수용액상에서 공기와 빛, 알칼리 등에 의해 쉽게 불안정화되는 성질이 있어 화장품에 적용에 있어서 제한적이다. 아스코르빅산은 수용액상에서 불안정성에 영향을 주는 가장 중요한 인자인 공기, 특히 산소와 열, 빛 등의 외부환경에 민감하게 반응하여 산화에 의해 쉽게 분해되는 문제점이 있다. 본 연구에서는 이러한 아스코르빅산의 안정성을 증가시키고자 폴리올과 유화방법을 변화시켜 안정화하는 연구를 수행하였고 실온과 고온에서 색상과 아스코르빅산의 함량변화를 HPLC로 측정하여 비교하였다. 그 결과 실험한 조건들 중 폴리올은 글리세린을 사용한 경우 아스코르빅산의 안정화 가장 좋았으며 비수유화방법을 사용한 경우에 있어서 가장 안정하였다. 이러한 결과들로부터 아스코르빅산이 본 실험의 비수유화로 안정성이 증가하며 안정한 화장품을 만드는 데 적용이 가능하다.
Fifty hydrocarbon-metabolizing microorganisms were isolated from soil samples polluted by the petroleum oils in Gamman-dong, Busan. Among them, strain 2-3A, showing strong emulsification activity, was selected by oil film-collapsing method. This bacterium was identified as Acinetobacter sp. and designated as Acinetobacter sp. 2-3A. The optimum temperature and pH on the growth of Acinetobacter sp. 2-3A were 25℃ and pH 7.0, respectively. The carbon and nitrogen sources for the most effective emulsification activity were 3.0% olive oil and 0.5% peptone, respectively. The 0.15% potassium phosphate was the most effective emulsification activity as a phosphate source. The optimum emulsification activity condition was 20℃, pH 7.0, and 2.0% NaCl. The optimum time for the best production of biosurfactant was 27 hrs. The emulsification stability was maintained at the temperature range from 4℃ to 100℃, pH range from 6.0 to 10.0, and NaCl range from 0% to 10%. For the oil resolvability of the biosurfactant, the residual oils were investigated by gas chromatography. As a result, it was verified that the biosurfactant decreased and decomposed crude oils from nC10 to nC32.
본 연구에서는 poly(oxyethylene) hydrogenated castor oils (HCOs)/오일/에탄올/물로 이루어진 에멀젼에 대한 에탄올의 영향을 연구하였다. 에멀젼은 고에너지법인 균질기(homogenizer)를 병합하여 제조하였다. 에멀젼에 대한 에탄올의 영향을 평가하기 위해 입자 크기와 입자 분포 등의 물리적 특성을 측정하였으며 다른 성분의 조성은 같도록 하였다. HCO-20의 경우 에멀젼의 크기가 마이크로미터 크기에서 에탄올이 증가할수록 입자의 크기가 감소하는 것을 확인하였다. HCO-30의 경우 계면활성제 농도 4.00 %에서 입자 크기가 나노미터 크기로 나타났으며, 에탄올의 농도가 4.25 % 일 때 조성 1에서 입자 크기가 128.15 ± 1.06 nm이고 조성 2에서는 136.10 ± 0.99 nm로 가장 안정한 나노에멀젼이 생성되었다. 마찬가지로 HCO-40은 계면활성제 농도 4.00 %에서 입자가 나노미터 크기로 나타났으며, 에탄올이 4.50 %일 때 조성 1에서 입자 크기가 115.85 ± 0.78 nm이고 조성 2는 121.15 ± 0.35 nm로 안정한 나노에멀젼이 생성되었다. HCO-60의 경우에서는 계면활성제 농도 4.00 %, 에탄올 농도 2.25 %에서 에멀젼의 크기가 262.35 ± 0.64 nm인 안정한 나노에멀젼이 생성되었다. 마이크로 크기의 에멀젼에서는 에탄올의 함량이 증가할수록 입자의 크기가 감소하는 것을 알 수 있었고, 나노에멀젼에서는 에탄올의 특정 농도에서 최저값을 나타냄을 확인하였다. 나노에멀젼의 불안정화 과정은 Ostwald ripening에 의한 것으로 보여진다. 계면활성제 종류에 따른 에멀젼에 대한 에탄올의 영향을 연구함으로써 안정한 에멀젼을 만들기 위한 에탄올의 함량을 계산할 수 있을 것으로 사료된다.
For the purpose of development of an environmentally friendly aqueous cleanser, some experimental researches on emulsification of D-limonene were performed. OA series surfactants with different molecular weight were adapted as an emulsifier for preparation of O/W emulsion. Cleaning power of aqueous cleanser was measured by a dipping method adapting abietic acid(AA) as a solubilizate. Besides, drop size and drop size distribution, contact angle and storage stability of the aqueous cleansers were also measured and relationships among them were examined. Decrease in molecular weight of surfactant induced small drop size and contact angle, resulting in high cleaning power of aqueous cleanser. Aqueous cleanser consisted of 3wt.% OA300 and 30wt.% D-limonene showed the highest cleaning power, but displayed unfortunately with low storage stability. The storage stability of the aqueous cleanser with OA300 was significantly enhanced by addition of 0.5wt.% OA600 at the expanse of decrease in cleaning power.